» Articles » PMID: 28838920

CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia

Overview
Date 2017 Aug 26
PMID 28838920
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Although human genetics has resulted in the identification of novel lipid-related genes that can be targeted for the prevention of atherosclerotic vascular disease, medications targeting these genes or their protein products have short-term effects and require frequent administration during the course of the lifetime for maximal benefit. Genome-editing technologies, such as CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) have the potential to permanently alter genes in the body and produce long-term and even lifelong protection against atherosclerosis. In this review, we discuss recent advances in genome-editing technologies and early proof-of-concept studies of somatic in vivo genome editing in mice that highlight the potential of genome editing to target disease-related genes in patients, which would establish a novel therapeutic paradigm for atherosclerosis.

Citing Articles

Vascular Extracellular Matrix in Atherosclerosis.

Di Nubila A, Dilella G, Simone R, Barbieri S Int J Mol Sci. 2024; 25(22).

PMID: 39596083 PMC: 11594217. DOI: 10.3390/ijms252212017.


Emerging Therapeutic Strategies in Cardiovascular Diseases.

Singh R, Chandi S, Sran S, Aulakh S, Nijjar G, Singh K Cureus. 2024; 16(7):e64388.

PMID: 39131016 PMC: 11317025. DOI: 10.7759/cureus.64388.


What did CRISPR-Cas9 accomplish in its first 10 years?.

Khlidj Y Biochem Med (Zagreb). 2023; 33(3):030601.

PMID: 37545694 PMC: 10373057. DOI: 10.11613/BM.2023.030601.


Gene editing for dyslipidemias: New tools to "cut" lipids.

Stankov S, Cuchel M Atherosclerosis. 2023; 368:14-24.

PMID: 36725417 PMC: 10493168. DOI: 10.1016/j.atherosclerosis.2023.01.010.


Prospective Advances in Genome Editing Investigation.

Isola G Adv Exp Med Biol. 2022; 1396:301-313.

PMID: 36454474 DOI: 10.1007/978-981-19-5642-3_19.


References
1.
Lehrman M, Schneider W, Sudhof T, Brown M, Goldstein J, Russell D . Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985; 227(4683):140-6. PMC: 4449727. DOI: 10.1126/science.3155573. View

2.
Gregory S, Nazir S, Metcalf J . Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol. 2011; 6(3):357-374. PMC: 3129286. DOI: 10.2217/fvl.11.6. View

3.
Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X . Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 2016; 13(12):1029-1035. DOI: 10.1038/nmeth.4027. View

4.
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M . Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016; 353(6305). DOI: 10.1126/science.aaf8729. View

5.
Kim D, Lim K, Kim S, Yoon S, Kim K, Ryu S . Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. 2017; 35(5):475-480. DOI: 10.1038/nbt.3852. View