6.
Zhang X, Zhao J, Hao J, Zhao X, Chen L
. Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Res. 2014; 43(5):e31.
PMC: 4357691.
DOI: 10.1093/nar/gku1315.
View
7.
OReilly P, Hoggart C, Pomyen Y, Calboli F, Elliott P, Jarvelin M
. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS One. 2012; 7(5):e34861.
PMC: 3342314.
DOI: 10.1371/journal.pone.0034861.
View
8.
Jiang X, Barmada M, Cooper G, Becich M
. A bayesian method for evaluating and discovering disease loci associations. PLoS One. 2011; 6(8):e22075.
PMC: 3154195.
DOI: 10.1371/journal.pone.0022075.
View
9.
Gehlenborg N, ODonoghue S, Baliga N, Goesmann A, Hibbs M, Kitano H
. Visualization of omics data for systems biology. Nat Methods. 2010; 7(3 Suppl):S56-68.
DOI: 10.1038/nmeth.1436.
View
10.
da Silva Messias R, Galli V, Dos Anjos E Silva S, Rombaldi C
. Carotenoid biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces. Nutrients. 2014; 6(2):546-63.
PMC: 3942716.
DOI: 10.3390/nu6020546.
View
11.
Yan J, Kandianis C, Harjes C, Bai L, Kim E, Yang X
. Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet. 2010; 42(4):322-7.
DOI: 10.1038/ng.551.
View
12.
Bushel P, Wolfinger R, Gibson G
. Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes. BMC Syst Biol. 2007; 1:15.
PMC: 1839893.
DOI: 10.1186/1752-0509-1-15.
View
13.
Owens B, Lipka A, Magallanes-Lundback M, Tiede T, Diepenbrock C, Kandianis C
. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics. 2014; 198(4):1699-716.
PMC: 4256781.
DOI: 10.1534/genetics.114.169979.
View
14.
Harjes C, Rocheford T, Bai L, Brutnell T, Kandianis C, Sowinski S
. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008; 319(5861):330-3.
PMC: 2933658.
DOI: 10.1126/science.1150255.
View
15.
Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z
. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun. 2013; 4:2832.
DOI: 10.1038/ncomms3832.
View
16.
Han B, Chen X
. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies. BMC Genomics. 2011; 12 Suppl 2:S9.
PMC: 3194240.
DOI: 10.1186/1471-2164-12-S2-S9.
View
17.
Duarte C, Klimentidis Y, Harris J, Cardel M, Fernandez J
. A Hybrid Bayesian Network/Structural Equation (BN/SEM) Modeling Approach for Detecting Physiological Networks for Obesity-related Genetic Variants. Proceedings (IEEE Int Conf Bioinformatics Biomed). 2012; :696-702.
PMC: 3272699.
DOI: 10.1109/BIBMW.2011.6112455.
View
18.
Moore J, Gilbert J, Tsai C, Chiang F, Holden T, Barney N
. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol. 2006; 241(2):252-61.
DOI: 10.1016/j.jtbi.2005.11.036.
View
19.
McGeachie M, Chang H, Weiss S
. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data. PLoS Comput Biol. 2014; 10(6):e1003676.
PMC: 4055564.
DOI: 10.1371/journal.pcbi.1003676.
View
20.
Chander S, Guo Y, Yang X, Zhang J, Lu X, Yan J
. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet. 2007; 116(2):223-33.
DOI: 10.1007/s00122-007-0661-7.
View