» Articles » PMID: 28808255

Critical Role for Arginase 2 in Obesity-associated Pancreatic Cancer

Abstract

Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Despite recent identification of metabolic alterations in this lethal malignancy, the metabolic dependencies of obesity-associated PDA remain unknown. Here we show that obesity-driven PDA exhibits accelerated growth and a striking transcriptional enrichment for pathways regulating nitrogen metabolism. We find that the mitochondrial form of arginase (ARG2), which hydrolyzes arginine into ornithine and urea, is induced upon obesity, and silencing or loss of ARG2 markedly suppresses PDA. In vivo infusion of N-glutamine in obese mouse models of PDA demonstrates enhanced nitrogen flux into the urea cycle and infusion of N-arginine shows that Arg2 loss causes significant ammonia accumulation that results from the shunting of arginine catabolism into alternative nitrogen repositories. Furthermore, analysis of PDA patient tumors indicates that ARG2 levels correlate with body mass index (BMI). The specific dependency of PDA on ARG2 rather than the principal hepatic enzyme ARG1 opens a therapeutic window for obesity-associated pancreatic cancer.Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Here the authors show that obesity induces the expression of the mitochondrial form of arginase ARG2 in PDA and that ARG2 silencing or loss results in ammonia accumulation and suppression of obesity-driven PDA tumor growth.

Citing Articles

miR-223 and Chromogranin A Affect Inflammatory Immune Cell Activation in Liver Metastasis of Neuroendocrine Neoplasms.

Geisler L, Detjen K, Hellberg T, Kohlhepp M, Grotzinger C, Knorr J Cells. 2025; 14(2).

PMID: 39851539 PMC: 11763622. DOI: 10.3390/cells14020111.


Genetics and biology of pancreatic ductal adenocarcinoma.

Ying H, Kimmelman A, Bardeesy N, Kalluri R, Maitra A, DePinho R Genes Dev. 2024; 39(1-2):36-63.

PMID: 39510840 PMC: 11789498. DOI: 10.1101/gad.351863.124.


Pathophysiology of Arginases in Cancer and Efforts in Their Pharmacological Inhibition.

Marzeta-Assas P, Jacenik D, Zaslona Z Int J Mol Sci. 2024; 25(18).

PMID: 39337272 PMC: 11431790. DOI: 10.3390/ijms25189782.


AGR2: The Covert Driver and New Dawn of Hepatobiliary and Pancreatic Cancer Treatment.

Qu S, Jia W, Nie Y, Shi W, Chen C, Zhao Z Biomolecules. 2024; 14(7).

PMID: 39062458 PMC: 11275012. DOI: 10.3390/biom14070743.


Dietary fat and lipid metabolism in the tumor microenvironment.

Goswami S, Zhang Q, Celik C, Reich E, Yilmaz O Biochim Biophys Acta Rev Cancer. 2023; 1878(6):188984.

PMID: 37722512 PMC: 10937091. DOI: 10.1016/j.bbcan.2023.188984.


References
1.
Albury T, Pandey V, Gitto S, Dominguez L, Spinel L, Talarchek J . Constitutively active Akt1 cooperates with KRas(G12D) to accelerate in vivo pancreatic tumor onset and progression. Neoplasia. 2015; 17(2):175-82. PMC: 4351297. DOI: 10.1016/j.neo.2014.12.006. View

2.
Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001; 29(4):418-25. DOI: 10.1038/ng747. View

3.
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X . Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012; 15(6):827-37. PMC: 3372870. DOI: 10.1016/j.cmet.2012.05.001. View

4.
Rahib L, Smith B, Aizenberg R, Rosenzweig A, Fleshman J, Matrisian L . Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014; 74(11):2913-21. DOI: 10.1158/0008-5472.CAN-14-0155. View

5.
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H . Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011; 25(7):717-29. PMC: 3070934. DOI: 10.1101/gad.2016111. View