Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H
Genet Sel Evol. 2025; 57(1):12.
PMID: 40065264
PMC: 11892312.
DOI: 10.1186/s12711-025-00961-7.
Dong W, Lv H, Song Y, Lv Y, Xu X, Jing H
Front Microbiol. 2025; 16:1510058.
PMID: 39967738
PMC: 11833225.
DOI: 10.3389/fmicb.2025.1510058.
Yuan H, Jiao Y, Gao J, Wang T, Xia Y, Li K
Appl Microbiol Biotechnol. 2025; 109(1):44.
PMID: 39945936
PMC: 11825588.
DOI: 10.1007/s00253-024-13399-6.
Menajovsky M, Mayor P, Bodmer R, Perez-Pena P, Ulloa G, Greenwood A
Ecohealth. 2025; 22(1):69-78.
PMID: 39799202
PMC: 11890321.
DOI: 10.1007/s10393-024-01692-9.
Sardina-Gonzalez T, Vargas-Hernandez M, Sordo-Puga Y, Naranjo-Valdez P, Rodriguez-Molto M, Mendez-Orta M
BMC Vet Res. 2024; 20(1):514.
PMID: 39548490
PMC: 11566387.
DOI: 10.1186/s12917-024-04354-8.
Blastocystis occurrence and subtype diversity in European wild boar (Sus scrofa) from the Iberian Peninsula.
Koster P, Figueiredo A, Maloney J, Dashti A, Bailo B, Torres R
Vet Res. 2024; 55(1):133.
PMID: 39375799
PMC: 11460206.
DOI: 10.1186/s13567-024-01385-9.
No evidence of spread of Linda pestivirus in the wild boar population in Southern Germany.
Schulz D, Aebischer A, Wernike K, Beer M
Virol J. 2024; 21(1):205.
PMID: 39215313
PMC: 11365151.
DOI: 10.1186/s12985-024-02476-x.
Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever.
Song Y, Yuan Z, Ji J, Ruan Y, Li X, Wang L
Vaccines (Basel). 2024; 12(8).
PMID: 39204071
PMC: 11360710.
DOI: 10.3390/vaccines12080948.
Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study.
Huynh L, Otsuka M, Kobayashi M, Ngo H, Hew L, Hiono T
Viruses. 2024; 16(7).
PMID: 39066282
PMC: 11281528.
DOI: 10.3390/v16071120.
Label-Free Detection of African Swine Fever and Classical Swine Fever in the Point-of-Care Setting Using Photonic Integrated Circuits Integrated in a Microfluidic Device.
Manessis G, Frant M, Podgorska K, Gal-Cison A, Lyjak M, Urbaniak K
Pathogens. 2024; 13(5).
PMID: 38787267
PMC: 11124021.
DOI: 10.3390/pathogens13050415.
Development of a dual immunochromatographic test strip to detect E2 and E antibodies against classical swine fever.
Huynh L, Sohn E, Park Y, Kim J, Shimoda T, Hiono T
Front Microbiol. 2024; 15:1383976.
PMID: 38666258
PMC: 11043574.
DOI: 10.3389/fmicb.2024.1383976.
Porcine low-density lipoprotein receptor plays an important role in classical swine fever virus infection.
Leveringhaus E, Poljakovic R, Herrmann G, Roman-Sosa G, Becher P, Postel A
Emerg Microbes Infect. 2024; 13(1):2327385.
PMID: 38514916
PMC: 10962300.
DOI: 10.1080/22221751.2024.2327385.
Application of machine learning with large-scale data for an effective vaccination against classical swine fever for wild boar in Japan.
Ito S, Aguilar-Vega C, Bosch J, Isoda N, Sanchez-Vizcaino J
Sci Rep. 2024; 14(1):5312.
PMID: 38438432
PMC: 10912211.
DOI: 10.1038/s41598-024-55828-6.
What Influence Could the Acceptance of Visitors Cause on the Epidemic Dynamics of a Reinfectious Disease?: A Mathematical Model.
Xie Y, Ahmad I, Ikpe T, Sofia E, Seno H
Acta Biotheor. 2024; 72(1):3.
PMID: 38402514
PMC: 10894808.
DOI: 10.1007/s10441-024-09478-w.
Monitoring and evaluation of provincial classical swine fever immunization implementation with an E2 subunit vaccine in Jeju Island, South Korea.
Jang G, Kim E, Cho S, Moon S, Lee M, Ko J
Clin Exp Vaccine Res. 2024; 13(1):54-62.
PMID: 38362374
PMC: 10864886.
DOI: 10.7774/cevr.2024.13.1.54.
Evolutionary-Related High- and Low-Virulent Classical Swine Fever Virus Isolates Reveal Viral Determinants of Virulence.
Hinojosa Y, Liniger M, Garcia-Nicolas O, Gerber M, Rajaratnam A, Munoz-Gonzalez S
Viruses. 2024; 16(1).
PMID: 38275957
PMC: 10820463.
DOI: 10.3390/v16010147.
Performance of a Differentiation of Infected from Vaccinated Animals (DIVA) Classical Swine Fever Virus (CSFV) Serum and Oral Fluid Erns Antibody AlphaLISA Assay.
Panyasing Y, Gimenez-Lirola L, Thanawongnuwech R, Prakobsuk P, Kawilaphan Y, Kittawornrat A
Animals (Basel). 2023; 13(24).
PMID: 38136839
PMC: 10740410.
DOI: 10.3390/ani13243802.
Development of a quadruplex real-time quantitative RT-PCR for detection and differentiation of PHEV, PRV, CSFV, and JEV.
Hu X, Feng S, Shi K, Shi Y, Yin Y, Long F
Front Vet Sci. 2023; 10:1276505.
PMID: 38026635
PMC: 10643766.
DOI: 10.3389/fvets.2023.1276505.
A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protect Pigs against a Virulent CSFV Challenge.
Silva E, Medina-Ramirez E, Pavulraj S, Gladue D, Borca M, Chowdhury S
Viruses. 2023; 15(11).
PMID: 38005821
PMC: 10674279.
DOI: 10.3390/v15112143.
Development of short hairpin RNA expression vectors targeting the internal ribosomal entry site of the classical swine fever virus genomic RNA.
Okamoto R, Ito N, Ide Y, Kitab B, Sakoda Y, Tsukiyama-Kohara K
BMC Biotechnol. 2023; 23(1):37.
PMID: 37684601
PMC: 10492304.
DOI: 10.1186/s12896-023-00805-6.