» Articles » PMID: 28794406

The Non-coding RNA Landscape of Human Hematopoiesis and Leukemia

Abstract

Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.

Citing Articles

The lncRNA DUBR is regulated by CTCF and coordinates chromatin landscape and gene expression in hematopoietic cells.

Nunez-Martinez H, Tapia-Urzua G, Cerecedo-Castillo A, Peralta-Alvarez C, Guerrero G, Huarte M Nucleic Acids Res. 2025; 53(4).

PMID: 39995041 PMC: 11850227. DOI: 10.1093/nar/gkaf093.


Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis.

Vici A, Castelli G, Francescangeli F, Cerio A, Pelosi E, Screnci M Int J Mol Sci. 2024; 25(22).

PMID: 39596371 PMC: 11595288. DOI: 10.3390/ijms252212305.


Deciphering Transcriptomic Variations in Hematopoietic Lineages: HSCs, EBs, and MKs.

Dahariya S, Enright A, Kumar S, Gutti R Int J Mol Sci. 2024; 25(18).

PMID: 39337559 PMC: 11431954. DOI: 10.3390/ijms251810073.


Integration of miRNA expression analysis of purified leukocytes and whole blood reveals blood-borne candidate biomarkers for lung cancer.

Hong G, Huo Y, Gao Y, Ma L, Li S, Tian T Epigenetics. 2024; 19(1):2393948.

PMID: 39164937 PMC: 11340745. DOI: 10.1080/15592294.2024.2393948.


Multifaceted roles of Meg3 in cellular senescence and atherosclerosis.

Cheng X, Shihabudeen Haider Ali M, Baki V, Moran M, Su H, Sun X Atherosclerosis. 2024; 392():117506.

PMID: 38518516 PMC: 11088985. DOI: 10.1016/j.atherosclerosis.2024.117506.


References
1.
Notta F, Zandi S, Takayama N, Dobson S, Gan O, Wilson G . Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2015; 351(6269):aab2116. PMC: 4816201. DOI: 10.1126/science.aab2116. View

2.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

3.
Volders P, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J . An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res. 2014; 43(Database issue):D174-80. PMC: 4383901. DOI: 10.1093/nar/gku1060. View

4.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View

5.
Marchese F, Huarte M . Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics. 2013; 9(1):21-6. PMC: 3928181. DOI: 10.4161/epi.27472. View