Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene During Mesenchymal Lineage Commitment
Overview
Affiliations
Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role.
Zhu S, Chen W, Masson A, Li Y Cell Discov. 2024; 10(1):71.
PMID: 38956429 PMC: 11219878. DOI: 10.1038/s41421-024-00689-6.
Kawa Y, Shindo M, Ohgane J, Inui M Biochem Biophys Rep. 2024; 38:101733.
PMID: 38799114 PMC: 11127475. DOI: 10.1016/j.bbrep.2024.101733.
Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors.
Pekkarinen M, Nordfors K, Uusi-Makela J, Kytola V, Hartewig A, Huhtala L Life Sci Alliance. 2024; 7(6).
PMID: 38499326 PMC: 10948937. DOI: 10.26508/lsa.202302088.
Dashti P, Thaler R, Hawse J, Galvan M, van der Eerden B, van Wijnen A Bone. 2023; 176:116866.
PMID: 37558192 PMC: 10962865. DOI: 10.1016/j.bone.2023.116866.
Atf7ip Inhibits Osteoblast Differentiation via Negative Regulation of the Sp7 Transcription Factor.
Hu G, Shi X, Qu X, Han C, Hu A, Jia Z Int J Mol Sci. 2023; 24(5).
PMID: 36901736 PMC: 10002255. DOI: 10.3390/ijms24054305.