» Articles » PMID: 28783157

Nanostructured Organic Semiconductor Films for Molecular Detection with Surface-enhanced Raman Spectroscopy

Overview
Journal Nat Mater
Date 2017 Aug 8
PMID 28783157
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

π-Conjugated organic semiconductors have been explored in several optoelectronic devices, yet their use in molecular detection as surface-enhanced Raman spectroscopy (SERS)-active platforms is unknown. Herein, we demonstrate that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition. DFH-4T films without any additional plasmonic layer exhibit unprecedented Raman signal enhancements up to 3.4 × 10 for the probe molecule methylene blue. The combination of quantum mechanical computations, comparative experiments with a fluorocarbon-free α,ω-dihexylquaterthiophene (DH-4T), and thin-film microstructural analysis demonstrates the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH-4T film morphology governing the SERS response. Furthermore, Raman signal enhancements up to ∼10 and sub-zeptomole (<10 mole) analyte detection were accomplished by coating the DFH-4T films with a thin gold layer. Our results offer important guidance for the molecular design of SERS-active organic semiconductors and easily fabricable SERS platforms for ultrasensitive trace analysis.

Citing Articles

Nanostructured Surfaces with Plasmonic Activity and Superhydrophobicity: Review of Fabrication Strategies and Applications.

Ruzi M, Celik N, Sahin F, Sakir M, Onses M Small. 2025; 21(6):e2408189.

PMID: 39757431 PMC: 11817952. DOI: 10.1002/smll.202408189.


Machine Learning-Assisted SERS Reveals the Biochemical Signature of Enhanced Protein Secretion from Surface-Modified Magnetic Nanoparticles.

Dagci I, Solak K, Oncer N, Yildiz Arslan S, Unver Y, Yilmaz M ACS Appl Mater Interfaces. 2024; 16(51):70392-70406.

PMID: 39662987 PMC: 11672479. DOI: 10.1021/acsami.4c18591.


Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg J, Besteiro L ACS Nano. 2024; 18(43):29337-29379.

PMID: 39401392 PMC: 11526435. DOI: 10.1021/acsnano.4c06192.


Multiple valence states of Fe boosting SERS activity of FeO nanoparticles and enabling effective SERS-MRI bimodal cancer imaging.

Lin J, Ma X, Li A, Akakuru O, Pan C, He M Fundam Res. 2024; 4(4):858-867.

PMID: 39156566 PMC: 11330100. DOI: 10.1016/j.fmre.2022.04.018.


Flexible 3D Plasmonic Web Enables Remote Surface Enhanced Raman Spectroscopy.

Rodriguez-Sevilla E, Alvarez-Martinez J, Castro-Beltran R, Morales-Narvaez E Adv Sci (Weinh). 2024; 11(23):e2402192.

PMID: 38582528 PMC: 11187956. DOI: 10.1002/advs.202402192.


References
1.
Pearman W, Fountain 3rd A . Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Appl Spectrosc. 2006; 60(4):356-65. DOI: 10.1366/000370206776593744. View

2.
Chen A, Chatterjee S . Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013; 42(12):5425-38. DOI: 10.1039/c3cs35518g. View

3.
Jensen L, Autschbach J, Schatz G . Finite lifetime effects on the polarizability within time-dependent density-functional theory. J Chem Phys. 2005; 122(22):224115. DOI: 10.1063/1.1929740. View

4.
Wang X, Shi W, She G, Mu L . Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J Am Chem Soc. 2011; 133(41):16518-23. DOI: 10.1021/ja2057874. View

5.
Zhang Y, Diao Y, Lee H, Mirabito T, Johnson R, Puodziukynaite E . Intrinsic and extrinsic parameters for controlling the growth of organic single-crystalline nanopillars in photovoltaics. Nano Lett. 2014; 14(10):5547-54. DOI: 10.1021/nl501933q. View