» Articles » PMID: 28779596

Machine-learning-based Classification of Real-time Tissue Elastography for Hepatic Fibrosis in Patients with Chronic Hepatitis B

Overview
Journal Comput Biol Med
Publisher Elsevier
Date 2017 Aug 6
PMID 28779596
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Hepatic fibrosis is a common middle stage of the pathological processes of chronic liver diseases. Clinical intervention during the early stages of hepatic fibrosis can slow the development of liver cirrhosis and reduce the risk of developing liver cancer. Performing a liver biopsy, the gold standard for viral liver disease management, has drawbacks such as invasiveness and a relatively high sampling error rate. Real-time tissue elastography (RTE), one of the most recently developed technologies, might be promising imaging technology because it is both noninvasive and provides accurate assessments of hepatic fibrosis. However, determining the stage of liver fibrosis from RTE images in a clinic is a challenging task. In this study, in contrast to the previous liver fibrosis index (LFI) method, which predicts the stage of diagnosis using RTE images and multiple regression analysis, we employed four classical classifiers (i.e., Support Vector Machine, Naïve Bayes, Random Forest and K-Nearest Neighbor) to build a decision-support system to improve the hepatitis B stage diagnosis performance. Eleven RTE image features were obtained from 513 subjects who underwent liver biopsies in this multicenter collaborative research. The experimental results showed that the adopted classifiers significantly outperformed the LFI method and that the Random Forest(RF) classifier provided the highest average accuracy among the four machine algorithms. This result suggests that sophisticated machine-learning methods can be powerful tools for evaluating the stage of hepatic fibrosis and show promise for clinical applications.

Citing Articles

Artificial Intelligence and the Future of Gastroenterology and Hepatology.

Penrice D, Rattan P, Simonetto D Gastro Hep Adv. 2024; 1(4):581-595.

PMID: 39132066 PMC: 11307848. DOI: 10.1016/j.gastha.2022.02.025.


Identifying necrotizing soft tissue infection using infectious fluid analysis and clinical parameters based on machine learning algorithms.

Chang C, Lin C, Fann W, Hsieh C Heliyon. 2024; 10(9):e29578.

PMID: 38707339 PMC: 11066613. DOI: 10.1016/j.heliyon.2024.e29578.


Artificial Intelligence in Liver Diseases: Recent Advances.

Lu F, Meng Y, Song X, Li X, Liu Z, Gu C Adv Ther. 2024; 41(3):967-990.

PMID: 38286960 DOI: 10.1007/s12325-024-02781-5.


Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review.

Singh S, Hoque S, Zekry A, Sowmya A J Med Syst. 2023; 47(1):73.

PMID: 37432493 PMC: 10335966. DOI: 10.1007/s10916-023-01968-7.


Artificial intelligence - based ultrasound elastography for disease evaluation - a narrative review.

Zhang X, Wei Q, Wu G, Tang Q, Pan X, Chen G Front Oncol. 2023; 13:1197447.

PMID: 37333814 PMC: 10272784. DOI: 10.3389/fonc.2023.1197447.