» Articles » PMID: 28778860

Pharmacologic Approaches to Improve Mitochondrial Function in AKI and CKD

Overview
Specialty Nephrology
Date 2017 Aug 6
PMID 28778860
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

AKI is associated with high morbidity and mortality, and it predisposes to the development and progression of CKD. Novel strategies that minimize AKI and halt the progression of CKD are urgently needed. Normal kidney function involves numerous different cell types, such as tubular epithelial cells, endothelial cells, and podocytes, working in concert. This delicate balance involves many energy-intensive processes. Fatty acids are the preferred energy substrates for the kidney, and defects in fatty acid oxidation and mitochondrial dysfunction are universally involved in diverse causes of AKI and CKD. This review provides an overview of ATP production and energy demands in the kidney and summarizes preclinical and clinical evidence of mitochondrial dysfunction in AKI and CKD. New therapeutic strategies targeting mitochondria protection and cellular bioenergetics are presented, with emphasis on those that have been evaluated in animal models of AKI and CKD. Targeting mitochondrial function and cellular bioenergetics upstream of cellular damage may offer advantages compared with targeting downstream inflammatory and fibrosis processes.

Citing Articles

Twist2 knockdown alleviates renal ischemia-reperfusion injury by maintaining mitochondrial function and enhancing mitophagy through Bnip3.

Zhang L, Ye J, Qiu C Hum Cell. 2025; 38(2):50.

PMID: 39918659 DOI: 10.1007/s13577-025-01177-z.


Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats.

Queiroz A, Garcia C, Silva J, Cavalini D, Alexandrino A, Cunha A Int J Mol Sci. 2025; 26(1.

PMID: 39796122 PMC: 11720031. DOI: 10.3390/ijms26010266.


Tubular MYDGF Slows Progression of Chronic Kidney Disease by Maintaining Mitochondrial Homeostasis.

Liu X, Zhang Y, Wang Y, Yang Y, Qiao Z, Zhan P Adv Sci (Weinh). 2024; 12(3):e2409756.

PMID: 39587987 PMC: 11744703. DOI: 10.1002/advs.202409756.


Mitochondrial destabilization in tendinopathy and potential therapeutic strategies.

Cheng L, Zheng Q, Qiu K, Ker D, Chen X, Yin Z J Orthop Translat. 2024; 49:49-61.

PMID: 39430132 PMC: 11488423. DOI: 10.1016/j.jot.2024.09.003.


Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury.

Zhang X, Wu W, Li Y, Peng Z Ren Fail. 2024; 46(2):2403652.

PMID: 39319697 PMC: 11425701. DOI: 10.1080/0886022X.2024.2403652.


References
1.
Siegel N, Avison M, REILLY H, Alger J, Shulman R . Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl2 determined by 31P-NMR. Am J Physiol. 1983; 245(4):F530-4. DOI: 10.1152/ajprenal.1983.245.4.F530. View

2.
Mount P, Power D . Balancing the energy equation for healthy kidneys. J Pathol. 2015; 237(4):407-10. DOI: 10.1002/path.4600. View

3.
Birk A, Chao W, Liu S, Soong Y, Szeto H . Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia. Biochim Biophys Acta. 2015; 1847(10):1075-84. PMC: 4547887. DOI: 10.1016/j.bbabio.2015.06.006. View

4.
Park C, Zhang Y, Zhang X, Wu J, Chen L, Cha D . PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int. 2006; 69(9):1511-7. DOI: 10.1038/sj.ki.5000209. View

5.
Szeto H, Liu S, Soong Y, Wu D, Darrah S, Cheng F . Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011; 22(6):1041-52. PMC: 3103724. DOI: 10.1681/ASN.2010080808. View