» Articles » PMID: 28773531

In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections

Overview
Publisher MDPI
Date 2017 Aug 5
PMID 28773531
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control.

Citing Articles

Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics.

Butler J, Handy R, Upton M, Besinis A ACS Nano. 2023; 17(8):7064-7092.

PMID: 37027838 PMC: 10134505. DOI: 10.1021/acsnano.2c12488.


Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management.

Sabarees G, Velmurugan V, Tamilarasi G, Alagarsamy V, Solomon V Polymers (Basel). 2022; 14(19).

PMID: 36235942 PMC: 9571512. DOI: 10.3390/polym14193994.


Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin.

Paladini F, Pollini M Materials (Basel). 2022; 15(19).

PMID: 36234293 PMC: 9572978. DOI: 10.3390/ma15196952.


Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in and .

Hosnedlova B, Kabanov D, Kepinska M, Narayanan V, Parikesit A, Fernandez C Nanomaterials (Basel). 2022; 12(13).

PMID: 35808019 PMC: 9268453. DOI: 10.3390/nano12132183.


Effects and formulation of silver nanoscaffolds on cytotoxicity dependent ion release kinetics towards enhanced excision wound healing patterns in Wistar albino rats.

Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N RSC Adv. 2022; 9(61):35677-35694.

PMID: 35528070 PMC: 9074428. DOI: 10.1039/c9ra06913e.


References
1.
Lipsky B, Hoey C . Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009; 49(10):1541-9. DOI: 10.1086/644732. View

2.
Castellano J, Shafii S, Ko F, Donate G, Wright T, Mannari R . Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J. 2007; 4(2):114-22. PMC: 7951235. DOI: 10.1111/j.1742-481X.2007.00316.x. View

3.
Rhoads D, Wolcott R, Percival S . Biofilms in wounds: management strategies. J Wound Care. 2008; 17(11):502-8. DOI: 10.12968/jowc.2008.17.11.31479. View

4.
Percival S, Thomas J, Slone W, Linton S, Corum L, Okel T . The efficacy of silver dressings and antibiotics on MRSA and MSSA isolated from burn patients. Wound Repair Regen. 2011; 19(6):767-74. DOI: 10.1111/j.1524-475X.2011.00739.x. View

5.
Edwards-Jones V . The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol. 2009; 49(2):147-52. DOI: 10.1111/j.1472-765X.2009.02648.x. View