» Articles » PMID: 28773337

PolystyreneDivinylbenzene PolyHIPE Monoliths in 1.0 Mm Column Formats for Liquid Chromatography

Overview
Publisher MDPI
Date 2017 Aug 5
PMID 28773337
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The reversed phase liquid chromatographic (RP-HPLC) separation of small molecules using a polystyrene--divinylbenzene (PSDVB) polyHIPE stationary phases housed within 1.0 mm i.d. silcosteel columns is presented within this study. A 90% PSDVB polyHIPE was covalently attached to the walls of the column housing by prior wall modification with 3-(trimethoxysilyl) propyl methacrylate and could withstand operating backpressures in excess of 200 bar at a flow rate of 1.2 mL/min. Permeability studies revealed that the monolith swelled slightly in 100% acetonitrile relative to 100% water but could nevertheless be used to separate five alkylbenzenes using a flow rate of 40 µL/min (linear velocity: 0.57 mm/s). Remarkable column-to-column reproducibility is shown with retention factor variation between 2.6% and 6.1% for two separately prepared columns.

Citing Articles

Effect of shearing stress on the radial heterogeneity and chromatographic performance of styrene-based polymerised high internal phase emulsions prepared in capillary format.

Desire C, Arrua R, Mansour F, Bon S, Hilder E RSC Adv. 2022; 9(13):7301-7313.

PMID: 35519965 PMC: 9061218. DOI: 10.1039/c8ra06188b.


Styrene-based polymerised high internal phase emulsions using monomers in the internal phase as co-surfactants for improved liquid chromatography.

Desire C, Arrua R, Mansour F, Bon S, Hilder E RSC Adv. 2022; 12(16):9773-9785.

PMID: 35424961 PMC: 8961205. DOI: 10.1039/d1ra07705h.


Influence of Functional Group Concentration on Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs: Upgrading Macroporosity with Nanoporosity.

Koler A, Kolar M, Jerabek K, Krajnc P Polymers (Basel). 2021; 13(16).

PMID: 34451260 PMC: 8399335. DOI: 10.3390/polym13162721.


Macroporous Polymer Monoliths in Thin Layer Format.

Korzhikova-Vlakh E, Antipchik M, Tennikova T Polymers (Basel). 2021; 13(7).

PMID: 33801786 PMC: 8037505. DOI: 10.3390/polym13071059.

References
1.
Svec F . Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J Chromatogr A. 2011; 1228:250-62. PMC: 3210888. DOI: 10.1016/j.chroma.2011.07.019. View

2.
Trojer L, Bisjak C, Wieder W, Bonn G . High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. J Chromatogr A. 2009; 1216(35):6303-9. DOI: 10.1016/j.chroma.2009.07.010. View

3.
Arrua R, Haddad P, Hilder E . Monolithic cryopolymers with embedded nanoparticles. II. Capillary liquid chromatography of proteins using charged embedded nanoparticles. J Chromatogr A. 2013; 1311:121-6. DOI: 10.1016/j.chroma.2013.08.077. View

4.
Nischang I, Svec F, Frechet J . Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries. Anal Chem. 2009; 81(17):7390-6. PMC: 2773294. DOI: 10.1021/ac901162x. View

5.
Zhang Q, Guo J, Wang F, Crommen J, Jiang Z . Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations. J Chromatogr A. 2014; 1325:147-54. DOI: 10.1016/j.chroma.2013.12.019. View