» Articles » PMID: 28772907

Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites

Overview
Publisher MDPI
Date 2017 Aug 5
PMID 28772907
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred.

Citing Articles

Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing.

Kotsilkova R, Georgiev V, Aleksandrova M, Batakliev T, Ivanov E, Spinelli G Nanomaterials (Basel). 2024; 14(22).

PMID: 39591080 PMC: 11597630. DOI: 10.3390/nano14221840.


Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites.

Orellana J, Araya-Hermosilla E, Pucci A, Araya-Hermosilla R Polymers (Basel). 2024; 16(16).

PMID: 39204493 PMC: 11359776. DOI: 10.3390/polym16162273.


Fabrication of PLA/PCL/Graphene Nanoplatelet (GNP) Electrically Conductive Circuit Using the Fused Filament Fabrication (FFF) 3D Printing Technique.

Masarra N, Batistella M, Quantin J, Regazzi A, Pucci M, El Hage R Materials (Basel). 2022; 15(3).

PMID: 35160709 PMC: 8836401. DOI: 10.3390/ma15030762.


Characterization 0.1 wt.% Nanomaterial/Photopolymer Composites with Poor Nanomaterial Dispersion: Viscosity, Cure Depth and Dielectric Properties.

Mitkus R, Scharnofske M, Sinapius M Polymers (Basel). 2021; 13(22).

PMID: 34833246 PMC: 8618496. DOI: 10.3390/polym13223948.


Barrier Properties of GnP-PA-Extruded Films.

Boldt R, Leuteritz A, Schob D, Ziegenhorn M, Wagenknecht U Polymers (Basel). 2020; 12(3).

PMID: 32192140 PMC: 7183322. DOI: 10.3390/polym12030669.


References
1.
Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Van Tendeloo G . Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology. 2011; 19(30):305604. DOI: 10.1088/0957-4484/19/30/305604. View

2.
Santos R, Vilaverde C, Cunha E, Paiva M, Covas J . Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter. 2015; 12(1):77-86. DOI: 10.1039/c5sm01366f. View

3.
Choudhury S, Agrawal M, Formanek P, Jehnichen D, Fischer D, Krause B . Nanoporous Cathodes for High-Energy Li-S Batteries from Gyroid Block Copolymer Templates. ACS Nano. 2015; 9(6):6147-57. DOI: 10.1021/acsnano.5b01406. View

4.
Noh Y, Joh H, Yu J, Hwang S, Lee S, Lee C . Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci Rep. 2015; 5:9141. PMC: 4360639. DOI: 10.1038/srep09141. View

5.
Jiao L, Zhang L, Wang X, Diankov G, Dai H . Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009; 458(7240):877-80. DOI: 10.1038/nature07919. View