» Articles » PMID: 28757970

Stereoelectronic Source of the Anomalous Stability of Bis-peroxides

Overview
Journal Chem Sci
Specialty Chemistry
Date 2017 Aug 1
PMID 28757970
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The unusual stability of bis- and tris-peroxides contradicts the conventional wisdom - some of them can melt without decomposition at temperatures exceeding 100 °C. In this work, we disclose a stabilizing stereoelectronic effect that two peroxide groups can exert on each other. This stabilization originates from strong anomeric n → σ* interactions that are absent in mono-peroxides but reintroduced in molecules where two peroxide moieties are separated by a CH group. Furthermore, such effects can be induced by other σ-acceptors and amplified by structural constraints imposed by cyclic and bicyclic frameworks.

Citing Articles

Functional analysis of reveals its role in responses to low-phosphorus stress and regulation of grain yield in maize.

Zhang H, Luo B, Liu J, Jin X, Zhang H, Zhong H Front Plant Sci. 2023; 14:1286699.

PMID: 38023907 PMC: 10666784. DOI: 10.3389/fpls.2023.1286699.


A convenient method for synthesis of terpyridines a cooperative vinylogous anomeric based oxidation.

Karimi F, Yarie M, Zolfigol M RSC Adv. 2022; 10(43):25828-25835.

PMID: 35518593 PMC: 9055316. DOI: 10.1039/d0ra04461j.


Hyperconjugative Interactions of the Carbon-Halogen Bond that Influence the Geometry of Cyclic α-Haloacetals.

Demkiw K, Hu C, Woerpel K J Org Chem. 2022; 87(8):5315-5327.

PMID: 35363473 PMC: 9036965. DOI: 10.1021/acs.joc.2c00148.


Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step.

Auhim H, Grigorenko B, Harris T, Aksakal O, Polyakov I, Berry C Chem Sci. 2021; 12(22):7735-7745.

PMID: 34168826 PMC: 8188506. DOI: 10.1039/d0sc06693a.


Synthesis of unstrained Criegee intermediates: inverse α-effect and other protective stereoelectronic forces can stop Baeyer-Villiger rearrangement of γ-hydroperoxy-γ-peroxylactones.

A Vil V, Barsegyan Y, Kuhn L, Ekimova M, Semenov E, Korlyukov A Chem Sci. 2021; 11(20):5313-5322.

PMID: 34122989 PMC: 8159355. DOI: 10.1039/d0sc01025a.


References
1.
Kim H, Shibata Y, Wataya Y, Tsuchiya K, Masuyama A, Nojima M . Synthesis and antimalarial activity of cyclic peroxides, 1,2,4,5, 7-pentoxocanes and 1,2,4,5-tetroxanes. J Med Chem. 1999; 42(14):2604-9. DOI: 10.1021/jm990014j. View

2.
Plumley J, Evanseck J . Periodic trends and index of boron LEwis acidity. J Phys Chem A. 2009; 113(20):5985-92. DOI: 10.1021/jp811202c. View

3.
McCullough K, Wood J, Bhattacharjee A, Dong Y, Kyle D, Milhous W . Methyl-substituted dispiro-1,2,4,5-tetraoxanes: correlations of structural studies with antimalarial activity. J Med Chem. 2000; 43(6):1246-9. DOI: 10.1021/jm990530+. View

4.
Chung A, Miner M, Richert K, Rieder C, Woerpel K . Formation of an Endoperoxide upon Chromium-Catalyzed Allylic Oxidation of a Triterpene by Oxygen. J Org Chem. 2014; 80(1):266-73. DOI: 10.1021/jo502344x. View

5.
Allen F, Motherwell W . Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallogr B. 2002; 58(Pt 3 Pt 1):407-22. DOI: 10.1107/s0108768102004895. View