» Articles » PMID: 28740751

DAPK1 As an Independent Prognostic Marker in Liver Cancer

Overview
Journal PeerJ
Date 2017 Jul 26
PMID 28740751
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The death-associated protein kinase 1 (DAPK1) can act as an oncogene or a tumor suppressor gene depending on the cellular context as well as external stimuli. Our study aims to investigate the prognostic significance of DAPK1 in liver cancer in both mRNA and protein levels. The mRNA expression of DAPK1 was extracted from the Gene Expression Omnibus database in three independent liver cancer datasets while protein expression of DAPK1 was detected by immunohistochemistry in our Chinese liver cancer patient cohort. The associations between DAPK1 expression and clinical characteristics were tested. DAPK1 mRNA expression was down-regulated in liver cancer. Low levels of DAPK1 mRNA were associated with shorter survival in a liver cancer patient cohort ( = 115;  = 0.041), while negative staining of DAPK1 protein was significantly correlated with shorter time to progression ( = 0.002) and overall survival ( = 0.02). DAPK1 was an independent prognostic marker for both time to progression and overall survival by multivariate analysis. Liver cancer with the b-catenin mutation has a lower DAPK1 expression, suggesting that DAPK1 may be regulated under the b-catenin pathway. In addition, we also identified genes that are co-regulated with DAPK1. DAPK1 expression was positively correlated with IRF2, IL7R, PCOLCE and ZBTB16, and negatively correlated with SLC16A3 in both liver cancer datasets. Among these genes, PCOLCE and ZBTB16 were significantly down-regulated, while SLC16A3 was significantly upregulated in liver cancer. By using connectivity mapping of these co-regulated genes, we have identified amcinonide and sulpiride as potential small molecules that could potentially reverse DAPK1/PCOLCE/ZBTB16/SLC16A3 expression. Our study demonstrated for the first time that both DAPK1 mRNA and protein expression levels are important prognostic markers in liver cancer, and have identified genes that may contribute to DAPK1-mediated liver carcinogenesis.

Citing Articles

Assessing TGF-β Prognostic Model Predictions for Chemotherapy Response and Oncogenic Role of FKBP1A in Liver Cancer.

Chen W, Que Q, Zhong R, Lin Z, Yi Q, Wang Q Curr Pharm Des. 2024; 30(39):3131-3152.

PMID: 39185649 DOI: 10.2174/0113816128326151240820105525.


Death associated protein kinase 1 predicts the prognosis and the immunotherapy response of various cancers.

Yang J, Liu Y, Geng Q, Wang B Mol Biol Rep. 2024; 51(1):670.

PMID: 38787485 DOI: 10.1007/s11033-024-09240-y.


Locoregional treatment improves overall survival for liver cancer during second-line regorafenib or immune checkpoint inhibitor.

Lin P, Hsu Y, Kao Y, Teng W, Hsieh Y, Chen W Am J Cancer Res. 2024; 14(3):1306-1315.

PMID: 38590407 PMC: 10998751. DOI: 10.62347/GFVP1262.


Death-associated protein kinase 1 phosphorylates MDM2 and inhibits its protein stability and function.

Zhang M, Shui X, Zheng X, Lee J, Mei Y, Li R Arch Pharm Res. 2023; 46(11-12):882-896.

PMID: 37804415 DOI: 10.1007/s12272-023-01469-8.


Genome-wide RNA-sequencing dataset reveals sever as a novel prognostic long non-coding RNA and its potential molecular mechanisms in patients with colon adenocarcinoma.

Liao C, Gu Z, Huang W, Gong Y, Liao X, Lin M J Cancer. 2023; 14(12):2386-2398.

PMID: 37576398 PMC: 10414039. DOI: 10.7150/jca.83424.


References
1.
Sun Y, Xie J, Chen P, Zheng C, Li P, Wang J . Low Expression of CDK5 and p27 Are Associated with Poor Prognosis in Patients with Gastric Cancer. J Cancer. 2016; 7(9):1049-56. PMC: 4911871. DOI: 10.7150/jca.14778. View

2.
Steinmann S, Scheibe K, Erlenbach-Wuensch K, Neufert C, Schneider-Stock R . Death-associated protein kinase: A molecule with functional antagonistic duality and a potential role in inflammatory bowel disease (Review). Int J Oncol. 2015; 47(1):5-15. PMC: 4485655. DOI: 10.3892/ijo.2015.2998. View

3.
Sung W, Zheng H, Li S, Chen R, Liu X, Li Y . Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012; 44(7):765-9. DOI: 10.1038/ng.2295. View

4.
Deiss L, Feinstein E, Berissi H, Cohen O, Kimchi A . Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995; 9(1):15-30. DOI: 10.1101/gad.9.1.15. View

5.
Wang L, Huang J, Jiang M, Lin H . Tissue-specific transplantation antigen P35B (TSTA3) immune response-mediated metabolism coupling cell cycle to postreplication repair network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by biocomputation. Immunol Res. 2012; 52(3):258-68. DOI: 10.1007/s12026-012-8337-z. View