» Articles » PMID: 28736737

Diffraction Tomography with Fourier Ptychography

Overview
Journal Optica
Date 2017 Jul 25
PMID 28736737
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

This paper presents a technique to image the complex index of refraction of a sample across three dimensions. The only required hardware is a standard microscope and an array of LEDs. The method, termed Fourier ptychographic tomography (FPT), first captures a sequence of intensity-only images of a sample under angularly varying illumination. Then, using principles from ptychography and diffraction tomography, it computationally solves for the sample structure in three dimensions. The experimental microscope demonstrates a lateral spatial resolution of 0.39 μm and an axial resolution of 3.7 μm at the Nyquist-Shannon sampling limit (0.54 and 5.0 μm at the Sparrow limit, respectively) across a total imaging depth of 110 μm. Unlike competing methods, this technique quantitatively measures the volumetric refractive index of primarily transparent and contiguous sample features without the need for interferometry or any moving parts. Wide field-of-view reconstructions of thick biological specimens suggest potential applications in pathology and developmental biology.

Citing Articles

Multi-modal transport of intensity diffraction tomography microscopy with an electrically tunable lens [Invited].

Zhou Z, Zhang R, Zhou N, Chen Q, Zuo C Biomed Opt Express. 2025; 16(2):837-848.

PMID: 39958838 PMC: 11828454. DOI: 10.1364/BOE.545258.


Computational microscopy with coherent diffractive imaging and ptychography.

Miao J Nature. 2025; 637(8045):281-295.

PMID: 39780004 DOI: 10.1038/s41586-024-08278-z.


Quadrant darkfield for label-free imaging of intracellular puncta.

Moustafa T, Belote R, Polanco E, Judson-Torres R, Zangle T J Biomed Opt. 2024; 29(11):116501.

PMID: 39618547 PMC: 11605245. DOI: 10.1117/1.JBO.29.11.116501.


Spatially-coded Fourier ptychography: flexible and detachable coded thin films for quantitative phase imaging with uniform phase transfer characteristics.

Wang R, Yang L, Lee Y, Sun K, Shen K, Zhao Q Adv Opt Mater. 2024; 12(15).

PMID: 39473443 PMC: 11521390. DOI: 10.1002/adom.202303028.


DMD and microlens array as a switchable module for illumination angle scanning in optical diffraction tomography.

Yang S, Kim J, Swartz M, Eberhart J, Chowdhury S Biomed Opt Express. 2024; 15(10):5932-5946.

PMID: 39421770 PMC: 11482169. DOI: 10.1364/BOE.535123.


References
1.
Dubois A, Vabre L, Beaurepaire E . High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt. 2002; 41(4):805-12. DOI: 10.1364/ao.41.000805. View

2.
Godden T, Suman R, Humphry M, Rodenburg J, Maiden A . Ptychographic microscope for three-dimensional imaging. Opt Express. 2014; 22(10):12513-23. DOI: 10.1364/OE.22.012513. View

3.
Zheng G, Horstmeyer R, Yang C . Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics. 2014; 7(9):739-745. PMC: 4169052. DOI: 10.1038/nphoton.2013.187. View

4.
DUrso M, Belkebir K, Crocco L, Isernia T, Litman A . Phaseless imaging with experimental data: facts and challenges. J Opt Soc Am A Opt Image Sci Vis. 2007; 25(1):271-81. DOI: 10.1364/josaa.25.000271. View

5.
Hamanaka G, Matsumoto M, Imoto M, Kaneko H . Mesenchyme cells can function to induce epithelial cell proliferation in starfish embryos. Dev Dyn. 2010; 239(3):818-27. DOI: 10.1002/dvdy.22211. View