» Articles » PMID: 28732006

Drivers for Rift Valley Fever Emergence in Mayotte: A Bayesian Modelling Approach

Overview
Date 2017 Jul 22
PMID 28732006
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006-2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data.

Citing Articles

The Temperature-Associated Effects of Rift Valley Fever Virus Infections in Mosquitoes and Climate-Driven Epidemics: A Review.

Azerigyik F, Cagle S, Wilson W, Mitzel D, Kading R Viruses. 2025; 17(2).

PMID: 40006972 PMC: 11860320. DOI: 10.3390/v17020217.


The socioeconomic impacts of Rift Valley fever: A rapid review.

ONeill L, Gubbins S, Reynolds C, Limon G, Giorgakoudi K PLoS Negl Trop Dis. 2024; 18(8):e0012347.

PMID: 39207938 PMC: 11361445. DOI: 10.1371/journal.pntd.0012347.


Rift Valley fever in West Africa: A zoonotic disease with multiple socio-economic consequences.

Tinto B, Quellec J, Cetre-Sossah C, Dicko A, Salinas S, Simonin Y One Health. 2023; 17:100583.

PMID: 37664171 PMC: 10474305. DOI: 10.1016/j.onehlt.2023.100583.


Modeling the effectiveness of targeting Rift Valley fever virus vaccination using imperfect network information.

Sulaimon T, Chaters G, Nyasebwa O, Swai E, Cleaveland S, Enright J Front Vet Sci. 2023; 10:1049633.

PMID: 37456963 PMC: 10340087. DOI: 10.3389/fvets.2023.1049633.


Mechanistic models of Rift Valley fever virus transmission: A systematic review.

Cecilia H, Drouin A, Metras R, Balenghien T, Durand B, Chevalier V PLoS Negl Trop Dis. 2022; 16(11):e0010339.

PMID: 36399500 PMC: 9718419. DOI: 10.1371/journal.pntd.0010339.


References
1.
Gachohi J, Njenga M, Kitala P, Bett B . Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya. PLoS Negl Trop Dis. 2016; 10(12):e0005049. PMC: 5156372. DOI: 10.1371/journal.pntd.0005049. View

2.
Xue L, Scott H, Cohnstaedt L, Scoglio C . A network-based meta-population approach to model Rift Valley fever epidemics. J Theor Biol. 2012; 306:129-44. DOI: 10.1016/j.jtbi.2012.04.029. View

3.
Metras R, Porphyre T, Pfeiffer D, Kemp A, Thompson P, Collins L . Exploratory space-time analyses of Rift Valley Fever in South Africa in 2008-2011. PLoS Negl Trop Dis. 2012; 6(8):e1808. PMC: 3429380. DOI: 10.1371/journal.pntd.0001808. View

4.
Nanyingi M, Munyua P, Kiama S, Muchemi G, Thumbi S, Bitek A . A systematic review of Rift Valley Fever epidemiology 1931-2014. Infect Ecol Epidemiol. 2015; 5:28024. PMC: 4522434. DOI: 10.3402/iee.v5.28024. View

5.
Sissoko D, Giry C, Gabrie P, Tarantola A, Pettinelli F, Collet L . Rift Valley fever, Mayotte, 2007-2008. Emerg Infect Dis. 2009; 15(4):568-70. PMC: 2671425. DOI: 10.3201/eid1504.081045. View