» Articles » PMID: 28725532

Paper-Based Electrodes for Flexible Energy Storage Devices

Overview
Journal Adv Sci (Weinh)
Date 2017 Jul 21
PMID 28725532
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Paper-based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li-ion batteries, Li-S batteries, Li-oxygen batteries. This review summarizes recent advances in the synthesis of paper-based electrodes, including paper-supported electrodes and paper-like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper-based electrodes and energy storage devices.

Citing Articles

Large-Scale Compatible Roll-to-Roll Coating of Paper Electrodes and Their Compatibility as Lithium-Ion Battery Anodes.

Blomquist N, Phadatare M, Patil R, Zhang R, Leuschen N, Hummelgard M Nanomaterials (Basel). 2025; 15(2).

PMID: 39852728 PMC: 11767952. DOI: 10.3390/nano15020113.


Electrically weldable conductive elastomers.

Lin H, Zheng D, Wu X, He R, He L, Zhou X Sci Adv. 2024; 10(25):eadp0730.

PMID: 38896623 PMC: 11186498. DOI: 10.1126/sciadv.adp0730.


Interfacial Engineering of TiCT MXene Electrode Using g-CN Nanosheets for High-Performance Supercapacitor in Neutral Electrolyte.

Depijan M, Hantanasirisakul K, Pakawatpanurut P ACS Omega. 2024; 9(20):22256-22264.

PMID: 38799366 PMC: 11112722. DOI: 10.1021/acsomega.4c01353.


Tuning the Chemical and Electrochemical Properties of Paper-Based Carbon Electrodes by Pyrolysis of Polydopamine.

Rocha J, de Oliveira J, Bettini J, Strauss M, Selmi G, Okazaki A ACS Meas Sci Au. 2024; 4(2):188-200.

PMID: 38645575 PMC: 11027207. DOI: 10.1021/acsmeasuresciau.3c00063.


Investigating the Influence of Diverse Functionalized Carbon Nanotubes as Conductive Fibers on Paper-Based Sulfur Cathodes in Lithium-Sulfur Batteries.

Ren X, Wu H, Xiao Y, Wu H, Wang H, Li H Nanomaterials (Basel). 2024; 14(6).

PMID: 38535632 PMC: 10975383. DOI: 10.3390/nano14060484.


References
1.
Zhu H, Luo W, Ciesielski P, Fang Z, Zhu J, Henriksson G . Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem Rev. 2016; 116(16):9305-74. DOI: 10.1021/acs.chemrev.6b00225. View

2.
Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S . Electric field effect in atomically thin carbon films. Science. 2004; 306(5696):666-9. DOI: 10.1126/science.1102896. View

3.
Liu Y, Weng B, Razal J, Xu Q, Zhao C, Hou Y . High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Sci Rep. 2015; 5:17045. PMC: 4653634. DOI: 10.1038/srep17045. View

4.
Zhu X, Zhu Y, Murali S, Stoller M, Ruoff R . Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano. 2011; 5(4):3333-8. DOI: 10.1021/nn200493r. View

5.
Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X . Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano. 2013; 7(5):4042-9. DOI: 10.1021/nn4000836. View