» Articles » PMID: 28722008

Crustal Rheology Controls on the Tibetan Plateau Formation During India-Asia Convergence

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Jul 20
PMID 28722008
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The formation of the Tibetan plateau during the India-Asia collision remains an outstanding issue. Proposed models mostly focus on the different styles of Tibetan crustal deformation, yet these do not readily explain the observed variation of deformation and deep structures along the collisional zone. Here we use three-dimensional numerical models to evaluate the effects of crustal rheology on the formation of the Himalayan-Tibetan orogenic system. During convergence, a weaker Asian crust allows strain far north within the upper plate, where a wide continental plateau forms behind the orogeny. In contrast, a stronger Asian crust suppresses the plateau formation, while the orogeny accommodates most of the shortening. The stronger Asian lithosphere is also forced beneath the Indian lithosphere, forming a reversed-polarity underthrusting. Our results demonstrate that the observed variations in lithosphere deformation and structures along the India-Asia collision zone are primarily controlled by the strength heterogeneity of the Asian continental crust.

Citing Articles

Wholesale flat subduction of the Indian slab and northward mantle convective flow: Plateau growth and driving force of the India-Asia collision.

Ma J, Song X, Bunge H, Fichtner A, Tian Y Proc Natl Acad Sci U S A. 2025; 122(7):e2411776122.

PMID: 39928876 PMC: 11848353. DOI: 10.1073/pnas.2411776122.


Cenozoic India-Asia collision driven by mantle dragging the cratonic root.

Li Y, Liu L, Li S, Peng D, Cao Z, Li X Nat Commun. 2024; 15(1):6674.

PMID: 39107316 PMC: 11303558. DOI: 10.1038/s41467-024-51107-0.


Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau.

Zhang M, Guo Z, Xu S, Barry P, Sano Y, Zhang L Nat Commun. 2021; 12(1):4157.

PMID: 34230487 PMC: 8260613. DOI: 10.1038/s41467-021-24415-y.


Influence of the Thickness of the Overriding Plate on Convergence Zone Dynamics.

Hertgen S, Yamato P, Guillaume B, Magni V, Schliffke N, van Hunen J Geochem Geophys Geosyst. 2020; 21(2):e2019GC008678.

PMID: 32714097 PMC: 7375164. DOI: 10.1029/2019GC008678.


Ongoing formation of felsic lower crustal channel by relamination in Zagros collision zone revealed from regional tomography.

Talebi A, Koulakov I, Moradi A, Rahimi H, Gerya T Sci Rep. 2020; 10(1):8224.

PMID: 32427975 PMC: 7237424. DOI: 10.1038/s41598-020-64946-w.


References
1.
Nelson , Zhao , Brown , KUO , Che , Liu . Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science. 1996; 274(5293):1684-8. DOI: 10.1126/science.274.5293.1684. View

2.
Molnar P, Tapponnier P . Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science. 1975; 189(4201):419-26. DOI: 10.1126/science.189.4201.419. View

3.
Beaumont C, Jamieson R, Nguyen M, Lee B . Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature. 2001; 414(6865):738-42. DOI: 10.1038/414738a. View

4.
Wei W, Unsworth M, Jones A, Booker J, Tan H, Nelson D . Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science. 2001; 292(5517):716-9. DOI: 10.1126/science.1010580. View

5.
Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, WITTLINGER G . Oblique stepwise rise and growth of the Tibet plateau. Science. 2001; 294(5547):1671-7. DOI: 10.1126/science.105978. View