Ammonium Chloride Alters Neuronal Excitability and Synaptic Vesicle Release
Affiliations
Genetically encoded pH-sensors are widely used in studying cell membrane trafficking and membrane protein turnover because they render exo-/endocytosis-associated pH changes to fluorescent signals. For imaging and analysis purposes, high concentration ammonium chloride is routinely used to alkalize intracellular membrane compartments under the assumption that it does not cause long-term effects on cellular processes being studied like neurotransmission. However, pathological studies about hyperammonemia have shown that ammonium is toxic to brain cells especially astrocytes and neurons. Here, we focus on ammonium's physiological impacts on neurons including membrane potential, cytosolic Ca and synaptic vesicles. We have found that extracellularly applied ammonium chloride as low as 5 mM causes intracellular Ca-increase and a reduction of vesicle release even after washout. The often-used 50 mM ammonium chloride causes more extensive and persistent changes, including membrane depolarization, prolonged elevation of intracellular Ca and diminution of releasable synaptic vesicles. Our findings not only help to bridge the discrepancies in previous studies about synaptic vesicle release using those pH-sensors or other vesicle specific reporters, but also suggest an intriguing relationship between intracellular pH and neurotransmission.
Rubio V, McInchak N, Fernandez G, Benavides D, Herrera D, Jimenez C Sci Rep. 2024; 14(1):30777.
PMID: 39730504 PMC: 11680847. DOI: 10.1038/s41598-024-80958-2.
Kleidonas D, Hilfiger L, Lenz M, Haussinger D, Vlachos A Front Cell Neurosci. 2024; 18:1410275.
PMID: 39411004 PMC: 11473415. DOI: 10.3389/fncel.2024.1410275.
IL-2 and TCR stimulation induce expression and secretion of IL-32β by human T cells.
Sanna F, Benesova I, Pervan P, Krenz A, Wurzel A, Lohmayer R Front Immunol. 2024; 15:1437224.
PMID: 39211051 PMC: 11357969. DOI: 10.3389/fimmu.2024.1437224.
Studying Autophagy in Microglia: Overcoming the Obstacles.
Plaza-Zabala A, Sierra A Methods Mol Biol. 2023; 2713:45-70.
PMID: 37639114 DOI: 10.1007/978-1-0716-3437-0_3.
Zinc Inhibits the GABAR/ATPase during Postnatal Rat Development: The Role of Cysteine Residue.
Menzikov S, Zaichenko D, Moskovtsev A, Morozov S, Kubatiev A Int J Mol Sci. 2023; 24(3).
PMID: 36769085 PMC: 9917249. DOI: 10.3390/ijms24032764.