» Articles » PMID: 28683308

Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance

Abstract

The influence of the gut microbiome on metabolic and behavioral traits is widely accepted, though the microbiome-derived metabolites involved remain unclear. We carried out untargeted urine H-NMR spectroscopy-based metabolic phenotyping in an isogenic C57BL/6J mouse population (n = 50) and show that microbial-host co-metabolites are prodromal (i.e., early) markers predicting future divergence in metabolic (obesity and glucose homeostasis) and behavioral (anxiety and activity) outcomes with 94%-100% accuracy. Some of these metabolites also modulate disease phenotypes, best illustrated by trimethylamine-N-oxide (TMAO), a product of microbial-host co-metabolism predicting future obesity, impaired glucose tolerance (IGT), and behavior while reducing endoplasmic reticulum stress and lipogenesis in 3T3-L1 adipocytes. Chronic in vivo TMAO treatment limits IGT in HFD-fed mice and isolated pancreatic islets by increasing insulin secretion. We highlight the prodromal potential of microbial metabolites to predict disease outcomes and their potential in shaping mammalian phenotypic heterogeneity.

Citing Articles

Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD.

Termite F, Archilei S, DAmbrosio F, Petrucci L, Viceconti N, Iaccarino R Antioxidants (Basel). 2025; 14(1).

PMID: 39857390 PMC: 11759774. DOI: 10.3390/antiox14010056.


Gut Microbe-Generated Metabolite Trimethylamine-N-Oxide and Ischemic Stroke.

Li Z, He X, Fang Q, Yin X Biomolecules. 2024; 14(11).

PMID: 39595639 PMC: 11591650. DOI: 10.3390/biom14111463.


Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis.

Schneider E, ORiordan K, Clarke G, Cryan J Nat Metab. 2024; 6(8):1454-1478.

PMID: 39174768 DOI: 10.1038/s42255-024-01108-6.


α-Synuclein Overexpression and the Microbiome Shape the Gut and Brain Metabolome in Mice.

Morais L, Boktor J, Mahmoudiandehkordi S, Kaddurah-Daouk R, Mazmanian S bioRxiv. 2024; .

PMID: 38915679 PMC: 11195096. DOI: 10.1101/2024.06.07.597975.


High fat diet is associated with gut microbiota dysbiosis and decreased gut microbial derived metabolites related to metabolic health in young Göttingen Minipigs.

Lutzhoft D, Baekgard C, Wimborne E, Straarup E, Pedersen K, Swann J PLoS One. 2024; 19(3):e0298602.

PMID: 38427692 PMC: 10906878. DOI: 10.1371/journal.pone.0298602.


References
1.
Dumas M, Barton R, Toye A, Cloarec O, Blancher C, Rothwell A . Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006; 103(33):12511-6. PMC: 1567909. DOI: 10.1073/pnas.0601056103. View

2.
Smith M, Yatsunenko T, Manary M, Trehan I, Mkakosya R, Cheng J . Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013; 339(6119):548-54. PMC: 3667500. DOI: 10.1126/science.1229000. View

3.
Nicholson J, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W . Host-gut microbiota metabolic interactions. Science. 2012; 336(6086):1262-7. DOI: 10.1126/science.1223813. View

4.
Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith R . Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313(5790):1137-40. PMC: 4741373. DOI: 10.1126/science.1128294. View

5.
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F . A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490(7418):55-60. DOI: 10.1038/nature11450. View