» Articles » PMID: 28670325

More Is Better: Recent Progress in Multi-Omics Data Integration Methods

Overview
Journal Front Genet
Date 2017 Jul 4
PMID 28670325
Citations 289
Authors
Affiliations
Soon will be listed here.
Abstract

Multi-omics data integration is one of the major challenges in the era of precision medicine. Considerable work has been done with the advent of high-throughput studies, which have enabled the data access for downstream analyses. To improve the clinical outcome prediction, a gamut of software tools has been developed. This review outlines the progress done in the field of multi-omics integration and comprehensive tools developed so far in this field. Further, we discuss the integration methods to predict patient survival at the end of the review.

Citing Articles

Bioinformatic identification of signature miRNAs associated with fetoplacental vascular dysfunction in gestational diabetes mellitus.

Lu Y, Liu C, Pang X, Chen X, Wang C, Huang H Biochem Biophys Rep. 2025; 41():101888.

PMID: 39802395 PMC: 11720096. DOI: 10.1016/j.bbrep.2024.101888.


An update review of the application of single-cell RNA sequencing in pregnancy-related diseases.

Zhou Z, Yang X Front Endocrinol (Lausanne). 2024; 15:1415173.

PMID: 39717096 PMC: 11663665. DOI: 10.3389/fendo.2024.1415173.


Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions.

Sakagianni A, Koufopoulou C, Koufopoulos P, Kalantzi S, Theodorakis N, Nikolaou M Antibiotics (Basel). 2024; 13(11).

PMID: 39596745 PMC: 11590962. DOI: 10.3390/antibiotics13111052.


Supervised multiple kernel learning approaches for multi-omics data integration.

Briscik M, Tazza G, Vidacs L, Dillies M, Dejean S BioData Min. 2024; 17(1):53.

PMID: 39580456 PMC: 11585117. DOI: 10.1186/s13040-024-00406-9.


Priority-Elastic net for binary disease outcome prediction based on multi-omics data.

Musib L, Coletti R, Lopes M, Mourino H, Carrasquinha E BioData Min. 2024; 17(1):45.

PMID: 39472942 PMC: 11523883. DOI: 10.1186/s13040-024-00401-0.


References
1.
You Z, Yin Z, Han K, Huang D, Zhou X . A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinformatics. 2010; 11:343. PMC: 2909217. DOI: 10.1186/1471-2105-11-343. View

2.
Lock E, Hoadley K, Marron J, Nobel A . JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES. Ann Appl Stat. 2013; 7(1):523-542. PMC: 3671601. DOI: 10.1214/12-AOAS597. View

3.
Lin D, Zhang J, Li J, Calhoun V, Deng H, Wang Y . Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics. 2013; 14:245. PMC: 3751310. DOI: 10.1186/1471-2105-14-245. View

4.
Chen J, Bushman F, Lewis J, Wu G, Li H . Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics. 2012; 14(2):244-58. PMC: 3590923. DOI: 10.1093/biostatistics/kxs038. View

5.
Rabin B, Gaglio B, Sanders T, Nekhlyudov L, Dearing J, Bull S . Predicting cancer prognosis using interactive online tools: a systematic review and implications for cancer care providers. Cancer Epidemiol Biomarkers Prev. 2013; 22(10):1645-56. PMC: 3832108. DOI: 10.1158/1055-9965.EPI-13-0513. View