» Articles » PMID: 28666330

Monomolecular G-quadruplex Structures with Inversion of Polarity Sites: New Topologies and Potentiality

Overview
Specialty Biochemistry
Date 2017 Jul 2
PMID 28666330
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3'-3' and two 5'-5' inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3'-TGnT-5'-5'-TGnT-3'-3'-TGnT-5'-5'-TGnT-3' in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53-/-. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.

Citing Articles

Physicochemical and antiproliferative characteristics of RNA and DNA sequence-related G-quadruplexes.

Kotkowiak W, Roxo C, Pasternak A ACS Med Chem Lett. 2023; 14(1):35-40.

PMID: 36655120 PMC: 9841586. DOI: 10.1021/acsmedchemlett.2c00361.


Covalent Bi-Modular Parallel and Antiparallel G-Quadruplex DNA Nanocostructs Reduce Viability of Patient Glioma Primary Cell Cultures.

Legatova V, Samoylenkova N, Arutyunyan A, Tashlitsky V, Zavyalova E, Usachev D Int J Mol Sci. 2021; 22(7).

PMID: 33806042 PMC: 8036578. DOI: 10.3390/ijms22073372.


Endogenous and artificial miRNAs explore a rich variety of conformations: a potential relationship between secondary structure and biological functionality.

Gangemi C, Alaimo S, Pulvirenti A, Garcia-Vinuales S, Milardi D, Falanga A Sci Rep. 2020; 10(1):453.

PMID: 31949213 PMC: 6965629. DOI: 10.1038/s41598-019-57289-8.


Therapeutic Approaches Targeting Nucleolus in Cancer.

Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A Cells. 2019; 8(9).

PMID: 31527430 PMC: 6770360. DOI: 10.3390/cells8091090.


In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids?.

Sagi J J Nucleic Acids. 2017; 2017:1641845.

PMID: 29181193 PMC: 5664352. DOI: 10.1155/2017/1641845.

References
1.
Virgilio A, Esposito V, Citarella G, Mayol L, Galeone A . Structural investigations on the anti-HIV G-quadruplex-forming oligonucleotide TGGGAG and its analogues: evidence for the presence of an A-tetrad. Chembiochem. 2012; 13(15):2219-24. DOI: 10.1002/cbic.201200481. View

2.
Varizhuk A, Ilyinsky N, Smirnov I, Pozmogova G . G4 Aptamers: Trends in Structural Design. Mini Rev Med Chem. 2016; 16(16):1321-1329. DOI: 10.2174/1389557516666160321114715. View

3.
Jin R, Gaffney B, Wang C, Jones R, Breslauer K . Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci U S A. 1992; 89(18):8832-6. PMC: 50015. DOI: 10.1073/pnas.89.18.8832. View

4.
Tran P, Virgilio A, Esposito V, Citarella G, Mergny J, Galeone A . Effects of 8-methylguanine on structure, stability and kinetics of formation of tetramolecular quadruplexes. Biochimie. 2010; 93(3):399-408. DOI: 10.1016/j.biochi.2010.10.011. View

5.
Feigon J, Koshlap K, Smith F . 1H NMR spectroscopy of DNA triplexes and quadruplexes. Methods Enzymol. 1995; 261:225-55. DOI: 10.1016/s0076-6879(95)61012-x. View