» Articles » PMID: 28621662

Chronic Lithium Treatment Elicits Its Antimanic Effects Via BDNF-TrkB Dependent Synaptic Downscaling

Overview
Journal Elife
Specialty Biology
Date 2017 Jun 17
PMID 28621662
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Lithium is widely used as a treatment for Bipolar Disorder although the molecular mechanisms that underlie its therapeutic effects are under debate. In this study, we show brain-derived neurotrophic factor (BDNF) is required for the antimanic-like effects of lithium but not the antidepressant-like effects in mice. We performed whole cell patch clamp recordings of hippocampal neurons to determine the impact of lithium on synaptic transmission that may underlie the behavioral effects. Lithium produced a significant decrease in α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes due to postsynaptic homeostatic plasticity that was dependent on BDNF and its receptor tropomyosin receptor kinase B (TrkB). The decrease in AMPAR function was due to reduced surface expression of GluA1 subunits through dynamin-dependent endocytosis. Collectively, these findings demonstrate a requirement for BDNF in the antimanic action of lithium and identify enhanced dynamin-dependent endocytosis of AMPARs as a potential mechanism underlying the therapeutic effects of lithium.

Citing Articles

Altered synaptic homeostasis: a key factor in the pathophysiology of depression.

Wang B, He T, Qiu G, Li C, Xue S, Zheng Y Cell Biosci. 2025; 15(1):29.

PMID: 40001206 PMC: 11863845. DOI: 10.1186/s13578-025-01369-y.


The Impact of Electrophysiological Diversity on Pattern Completion in Lithium Nonresponsive Bipolar Disorder: A Computational Modeling Approach.

Nunes A, Singh S, Khayachi A, Stern S, Trappenberg T, Alda M Brain Behav. 2025; 15(1):e70209.

PMID: 39832133 PMC: 11745123. DOI: 10.1002/brb3.70209.


NEK4 modulates circadian fluctuations of emotional behaviors and synaptogenesis in male mice.

Yang Z, Cai X, Zhang C, Zhang Q, Li M, Ding Z Nat Commun. 2024; 15(1):9180.

PMID: 39448584 PMC: 11502819. DOI: 10.1038/s41467-024-53585-8.


New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview.

Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J Pharmacol Rev. 2024; 76(3):323-357.

PMID: 38697859 PMC: 11068842. DOI: 10.1124/pharmrev.120.000007.


Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission.

Wang C, McCarthy C, Guzikowski N, Kavalali E, Monteggia L Proc Natl Acad Sci U S A. 2024; 121(17):e2303664121.

PMID: 38621124 PMC: 11047077. DOI: 10.1073/pnas.2303664121.


References
1.
Jornada L, Moretti M, Valvassori S, Ferreira C, Padilha P, Arent C . Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res. 2009; 44(8):506-10. DOI: 10.1016/j.jpsychires.2009.11.002. View

2.
Duman R, Monteggia L . A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006; 59(12):1116-27. DOI: 10.1016/j.biopsych.2006.02.013. View

3.
Wei J, Liu W, Yan Z . Regulation of AMPA receptor trafficking and function by glycogen synthase kinase 3. J Biol Chem. 2010; 285(34):26369-76. PMC: 2924064. DOI: 10.1074/jbc.M110.121376. View

4.
Nakata H, Nakamura S . Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett. 2007; 581(10):2047-54. DOI: 10.1016/j.febslet.2007.04.041. View

5.
Smith M, Makino S, Kvetnansky R, Post R . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995; 15(3 Pt 1):1768-77. PMC: 6578156. View