» Articles » PMID: 28593987

Spaser As a Biological Probe

Abstract

Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications.

Citing Articles

Half-wave nanolasers and intracellular plasmonic lasing particles.

Cho S, Martino N, Yun S Nat Nanotechnol. 2025; .

PMID: 39747602 DOI: 10.1038/s41565-024-01843-7.


Nanolasers: More than a decade of progress, developments and challenges.

Ellis T, Eslami S, Palomba S Nanophotonics. 2024; 13(15):2707-2739.

PMID: 39635246 PMC: 11501162. DOI: 10.1515/nanoph-2023-0369.


Towards photoacoustic human imaging: Shining a new light on clinical diagnostics.

Wang Z, Yang F, Zhang W, Xiong K, Yang S Fundam Res. 2024; 4(5):1314-1330.

PMID: 39431136 PMC: 11489505. DOI: 10.1016/j.fmre.2023.01.008.


Ultrafast photoluminescence and multiscale light amplification in nanoplasmonic cavity glass.

Piotrowski P, Buza M, Nowaczynski R, Kongsuwan N, Surma H, Osewski P Nat Commun. 2024; 15(1):3309.

PMID: 38632272 PMC: 11024168. DOI: 10.1038/s41467-024-47539-3.


Ultrasmall InGa(As)P Dielectric and Plasmonic Nanolasers.

Sarkar D, Cho S, Yan H, Martino N, Dannenberg P, Yun S ACS Nano. 2023; 17(16):16048-16055.

PMID: 37523588 PMC: 11229223. DOI: 10.1021/acsnano.3c04721.


References
1.
Humar M, Yun S . Intracellular microlasers. Nat Photonics. 2015; 9(9):572-576. PMC: 4583142. DOI: 10.1038/nphoton.2015.129. View

2.
Zharov V . Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat Photonics. 2015; 5(2):110-116. PMC: 4282491. DOI: 10.1038/nphoton.2010.280. View

3.
Bergman D, Stockman M . Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett. 2003; 90(2):027402. DOI: 10.1103/PhysRevLett.90.027402. View

4.
Noginov M, Zhu G, Belgrave A, Bakker R, Shalaev V, Narimanov E . Demonstration of a spaser-based nanolaser. Nature. 2009; 460(7259):1110-2. DOI: 10.1038/nature08318. View

5.
Jonas A, Aas M, Karadag Y, Manioglu S, Anand S, McGloin D . In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. Lab Chip. 2014; 14(16):3093-100. DOI: 10.1039/c4lc00485j. View