Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont
Overview
Authors
Affiliations
Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of during infection of its host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes. Chlamydiae are known as major bacterial pathogens of humans, causing the ancient disease trachoma, but they are also frequently found in the environment where they infect ubiquitous protists such as amoebae. All known chlamydiae require a eukaryotic host cell to thrive. Using the environmental chlamydia within its natural host, , we investigated gene expression dynamics and throughout the complete chlamydial developmental cycle for the first time. This allowed us to infer how a major virulence mechanism, the type III secretion system, is regulated and employed, and we show that the physiology of chlamydiae undergoes a complete shift regarding carbon metabolism and energy generation. This study provides comprehensive insights into the infection strategy of chlamydiae and reveals a unique adaptation to life within a eukaryotic host cell.
Novel Drug Screening Assay for and the Anti-Amoebic Effect of Carbonic Anhydrase Inhibitors.
Haapanen S, Barker H, Carta F, Supuran C, Parkkila S J Med Chem. 2023; 67(1):152-164.
PMID: 38150360 PMC: 10788897. DOI: 10.1021/acs.jmedchem.3c01020.
Spontaneous Aberrant Bodies Formation in Human Pneumocytes Infected with .
Rovero A, Kebbi-Beghdadi C, Greub G Microorganisms. 2023; 11(10).
PMID: 37894026 PMC: 10609161. DOI: 10.3390/microorganisms11102368.
Guo X, Pan X, Sun Q, Hu Y, Shi J Sci Rep. 2023; 13(1):15070.
PMID: 37700027 PMC: 10497608. DOI: 10.1038/s41598-023-42222-x.
Herrera P, Schuster L, Zojer M, Na H, Schwarz J, Wascher F Genome Biol Evol. 2023; 15(8).
PMID: 37515591 PMC: 10402869. DOI: 10.1093/gbe/evad139.
Selberherr E, Penz T, Konig L, Conrady B, Siegl A, Horn M FEMS Microbiol Ecol. 2022; 98(1).
PMID: 34999767 PMC: 8831229. DOI: 10.1093/femsec/fiac001.