» Articles » PMID: 28587939

Temozolomide and Sorafenib As Programmed Cell Death Inducers of Human Glioma Cells

Overview
Journal Pharmacol Rep
Specialty Pharmacology
Date 2017 Jun 8
PMID 28587939
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Gliomas are aggressive brain tumors with very high resistance to chemotherapy. Therefore, the aim of the present study was to investigate the effectiveness of sorafenib and Temozolomide in elimination of human glioma cells through apoptosis and autophagy.

Methods: MOGGCCM (anaplastic astrocytoma) and T98G (glioblastoma multiforme) cell lines incubated with sorafenib and/or Temozolomide were used in the experiments. Cell morphology (ER stress, apoptosis, autophagy, and necrosis) was analyzed microscopically while apoptosis and mitochondrial membrane potential were assessed with flow cytometry. Beclin1, LC3, p62, Hsp27, and Hsp72 levels were analyzed by immunoblotting. The activity of caspase 3, 8, and 9 was evaluated fluorometrically. Expression of Hsps was blocked by transfection with specific siRNA.

Results: In MOGGCCM cells, Temozolomide most frequently induced autophagy, which was accompanied by decreased p62 and increased beclin1 and LC3II levels. Sorafenib initiated mainly apoptosis. Additional incubation with Temozolomide, synergistically potentiated the pro-apoptotic properties of sorafenib, but it was mediated in a caspase-independent way. In T98G cells, the effect of the analyzed drugs on programmed cell death induction was different from that in MOGGCCM cells. Sorafenib induced autophagy, while Temozolomide initiated mainly apoptosis. After simultaneous drug application, apoptosis dominated, suggesting synergistic action of both drugs. Inhibition of Hsp27 and Hsp72 expression increased the sensitivity of both cell lines to ER stress and, to a lesser extent, to induction of apoptosis, but not autophagy.

Conclusions: Sorafenib and Temozolomide applied in combination are potent apoptosis inducers in T98G and MOGGCCM cells. ER stress precedes the elimination. Blocking of Hsp expression has a greater impact on ER stress rather than apoptosis induction.

Citing Articles

Scutellarin combined with lidocaine exerts antineoplastic effect in human glioma associated with repression of epidermal growth factor receptor signaling.

He X, Yang Y, Zheng Y, Xia Q, Yu H, Zhao X PLoS One. 2025; 20(1):e0318031.

PMID: 39888904 PMC: 11785270. DOI: 10.1371/journal.pone.0318031.


A novel disulfide death-related genes prognostic signature identifies the role of IPO4 in glioma progression.

Wu H, Yang Z, Chang C, Wang Z, Zhang D, Guo Q Cancer Cell Int. 2024; 24(1):168.

PMID: 38734657 PMC: 11088110. DOI: 10.1186/s12935-024-03358-6.


Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents.

Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffre G, Lentini M Cancers (Basel). 2023; 15(9).

PMID: 37174088 PMC: 10177137. DOI: 10.3390/cancers15092622.


Nitrogen Fertilization and Solvents as Factors Modifying the Antioxidant and Anticancer Potential of L. Flower Head Extracts.

Sugier D, Sugier P, Jakubowicz-Gil J, Gawlik-Dziki U, Zajac A, Krol B Plants (Basel). 2023; 12(1).

PMID: 36616270 PMC: 9824058. DOI: 10.3390/plants12010142.


A pyroptosis-related signature predicts prognosis and indicates immune microenvironment infiltration in glioma.

Chen J, Chen S, Li B, Zhou S, Lin H Cancer Med. 2022; 12(4):5071-5087.

PMID: 36161280 PMC: 9972150. DOI: 10.1002/cam4.5247.