Jang H, Gardner A, Walters L, Neale A, Hardwick L, Cowan A
ACS Electrochem. 2025; 1(1):20-24.
PMID: 39878147
PMC: 11728718.
DOI: 10.1021/acselectrochem.4c00040.
Yoo J, Ingenmey J, Salanne M, Lukatskaya M
J Am Chem Soc. 2024; 146(46):31768-31777.
PMID: 39406354
PMC: 11583205.
DOI: 10.1021/jacs.4c10661.
Zhang G, Kucernak A
Angew Chem Int Ed Engl. 2023; 62(48):e202312607.
PMID: 37801612
PMC: 10952920.
DOI: 10.1002/anie.202312607.
Ye C, Dattila F, Chen X, Lopez N, Koper M
J Am Chem Soc. 2023; 145(36):19601-19610.
PMID: 37651736
PMC: 10510319.
DOI: 10.1021/jacs.3c03786.
Ye C, Raaijman S, Chen X, Koper M
ACS Appl Mater Interfaces. 2022; 14(40):45263-45271.
PMID: 36166505
PMC: 9562278.
DOI: 10.1021/acsami.2c10452.
Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO reduction kinetics.
Rebstock J, Zhu Q, Robert Baker L
Chem Sci. 2022; 13(25):7634-7643.
PMID: 35872825
PMC: 9242014.
DOI: 10.1039/d2sc01878k.
Real-Time In Situ Monitoring of CO Electroreduction in the Liquid and Gas Phases by Coupled Mass Spectrometry and Localized Electrochemistry.
Zhang G, Cui Y, Kucernak A
ACS Catal. 2022; 12(10):6180-6190.
PMID: 35633901
PMC: 9127967.
DOI: 10.1021/acscatal.2c00609.
Electrochemical Surface Area Quantification, CO Reduction Performance, and Stability Studies of Unsupported Three-Dimensional Au Aerogels versus Carbon-Supported Au Nanoparticles.
Chauhan P, Hiekel K, Diercks J, Herranz J, Saveleva V, Khavlyuk P
ACS Mater Au. 2022; 2(3):278-292.
PMID: 35578702
PMC: 9101071.
DOI: 10.1021/acsmaterialsau.1c00067.
Solvent-mediated outer-sphere CO electro-reduction mechanism over the Ag111 surface.
Sinha V, Khramenkova E, Pidko E
Chem Sci. 2022; 13(13):3803-3808.
PMID: 35432905
PMC: 8966634.
DOI: 10.1039/d1sc07119j.
Metal-Doped PdH(111) Catalysts for CO Reduction.
Ai C, Vegge T, Hansen H
ChemSusChem. 2022; 15(10):e202200008.
PMID: 35286748
PMC: 9320891.
DOI: 10.1002/cssc.202200008.
The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO Reduction on Gold.
Zhu Q, Wallentine S, Deng G, Rebstock J, Robert Baker L
JACS Au. 2022; 2(2):472-482.
PMID: 35252996
PMC: 8889607.
DOI: 10.1021/jacsau.1c00512.
Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go?.
Govindarajan N, Kastlunger G, Heenen H, Chan K
Chem Sci. 2022; 13(1):14-26.
PMID: 35059146
PMC: 8694373.
DOI: 10.1039/d1sc04775b.
Efficiency and selectivity of CO reduction to CO on gold gas diffusion electrodes in acidic media.
Monteiro M, Philips M, Schouten K, Koper M
Nat Commun. 2021; 12(1):4943.
PMID: 34400626
PMC: 8368099.
DOI: 10.1038/s41467-021-24936-6.
The Importance of Acid-Base Equilibria in Bicarbonate Electrolytes for CO Electrochemical Reduction and CO Reoxidation Studied on Au() Electrodes.
Marcandalli G, Villalba M, Koper M
Langmuir. 2021; 37(18):5707-5716.
PMID: 33913319
PMC: 8154874.
DOI: 10.1021/acs.langmuir.1c00703.
Syngas Evolution from CO Electroreduction by Porous Au Nanostructures.
Mascaretti L, Niorettini A, Bricchi B, Ghidelli M, Naldoni A, Caramori S
ACS Appl Energy Mater. 2021; 3(5):4658-4668.
PMID: 33829149
PMC: 8016180.
DOI: 10.1021/acsaem.0c00301.
Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO Reduction.
Bondue C, Graf M, Goyal A, Koper M
J Am Chem Soc. 2020; 143(1):279-285.
PMID: 33356205
PMC: 7809687.
DOI: 10.1021/jacs.0c10397.
Three-Dimensional Cathodes for Electrochemical Reduction of CO: From Macro- to Nano-Engineering.
Hui S, Shaigan N, Neburchilov V, Zhang L, Malek K, Eikerling M
Nanomaterials (Basel). 2020; 10(9).
PMID: 32962288
PMC: 7558977.
DOI: 10.3390/nano10091884.
Competition between CO Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions.
Goyal A, Marcandalli G, Mints V, Koper M
J Am Chem Soc. 2020; 142(9):4154-4161.
PMID: 32041410
PMC: 7059182.
DOI: 10.1021/jacs.9b10061.
Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO Reduction.
Wagner A, Ly K, Heidary N, Szabo I, Foldes T, Assaf K
ACS Catal. 2020; 10(1):751-761.
PMID: 31929948
PMC: 6945685.
DOI: 10.1021/acscatal.9b04221.
Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold.
Ringe S, Morales-Guio C, Chen L, Fields M, Jaramillo T, Hahn C
Nat Commun. 2020; 11(1):33.
PMID: 31911585
PMC: 6946669.
DOI: 10.1038/s41467-019-13777-z.