» Articles » PMID: 28585944

Cellular Uptake of Nanoparticles: Journey Inside the Cell

Overview
Journal Chem Soc Rev
Specialty Chemistry
Date 2017 Jun 7
PMID 28585944
Citations 652
Authors
Affiliations
Soon will be listed here.
Abstract

Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.

Citing Articles

Biosilicification-mimicking chiral nanostructures for targeted treatment of inflammatory bowel disease.

Xu M, Xin W, Xu J, Wang A, Ma S, Dai D Nat Commun. 2025; 16(1):2551.

PMID: 40089457 DOI: 10.1038/s41467-025-57890-8.


Advancing Nanomedicine Through Electron Microscopy: Insights Into Nanoparticle Cellular Interactions and Biomedical Applications.

Akhtar S, Zuhair F Int J Nanomedicine. 2025; 20:2847-2878.

PMID: 40078651 PMC: 11899938. DOI: 10.2147/IJN.S500978.


Advances and prospects of RNA delivery nanoplatforms for cancer therapy.

Attia M, Kijanka G, Nguyen N, Zhang J, An H Acta Pharm Sin B. 2025; 15(1):52-96.

PMID: 40041887 PMC: 11873661. DOI: 10.1016/j.apsb.2024.09.009.


Multifunctional Polypeptide-Based Nanoconjugates for Targeted Mitochondrial Delivery and Nonviral Gene Therapy.

Pegoraro C, Masia Sanchis E, dordevic S, Dolz-Perez I, Huck-Iriart C, Herrera L Chem Mater. 2025; 37(4):1457-1467.

PMID: 40026705 PMC: 11866743. DOI: 10.1021/acs.chemmater.4c02742.


Nanomedicine's shining armor: understanding and leveraging the metal-phenolic networks.

Tang Z, Huang Z, Huang Y, Huang M, Liu H, Du J J Nanobiotechnology. 2025; 23(1):158.

PMID: 40025537 PMC: 11874145. DOI: 10.1186/s12951-025-03210-7.


References
1.
Candeloro P, Tirinato L, Malara N, Fregola A, Casals E, Puntes V . Nanoparticle microinjection and Raman spectroscopy as tools for nanotoxicology studies. Analyst. 2011; 136(21):4402-8. DOI: 10.1039/c1an15313g. View

2.
Kobler C, Saber A, Jacobsen N, Wallin H, Vogel U, Qvortrup K . FIB-SEM imaging of carbon nanotubes in mouse lung tissue. Anal Bioanal Chem. 2014; 406(16):3863-73. PMC: 4039996. DOI: 10.1007/s00216-013-7566-x. View

3.
Champion J, Mitragotri S . Shape induced inhibition of phagocytosis of polymer particles. Pharm Res. 2008; 26(1):244-9. PMC: 2810499. DOI: 10.1007/s11095-008-9626-z. View

4.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K . Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000; 65(1-2):271-84. DOI: 10.1016/s0168-3659(99)00248-5. View

5.
Anderson H, Chen Y, Norkin L . Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell. 1996; 7(11):1825-34. PMC: 276029. DOI: 10.1091/mbc.7.11.1825. View