Poncin K, McKeand S, Lavender H, Kurzyp K, Harrison O, Roberti A
PLoS Biol. 2025; 23(2):e3003001.
PMID: 39908303
PMC: 11798529.
DOI: 10.1371/journal.pbio.3003001.
McCausland J, Kloos Z, Irnov I, Sonnert N, Zhou J, Putnick R
bioRxiv. 2025; .
PMID: 39829805
PMC: 11741416.
DOI: 10.1101/2025.01.08.631998.
Dai Y, Edwards V, Yu Q, Tettelin H, Stein D, Song W
J Clin Invest. 2024; 135(2.
PMID: 39585777
PMC: 11735093.
DOI: 10.1172/JCI183331.
Resta S, Guerra F, Tala A, Bucci C, Alifano P
Cells. 2024; 13(21.
PMID: 39513865
PMC: 11545737.
DOI: 10.3390/cells13211758.
Wheeler R, Gomperts Boneca I
Gut Microbes. 2024; 16(1):2395099.
PMID: 39239828
PMC: 11382707.
DOI: 10.1080/19490976.2024.2395099.
Antimicrobial activity of compounds identified by artificial intelligence discovery engine targeting enzymes involved in Neisseria gonorrhoeae peptidoglycan metabolism.
Kant R, Tilford H, Freitas C, Ferreira D, Ng J, Rucinski G
Biol Res. 2024; 57(1):62.
PMID: 39238057
PMC: 11375863.
DOI: 10.1186/s40659-024-00543-9.
Peptidoglycan fragment release and NOD activation by commensal species from humans and other animals.
Harris-Jones T, Chan J, Hackett K, Weyand N, Schaub R, Dillard J
Infect Immun. 2024; 92(5):e0000424.
PMID: 38563734
PMC: 11075463.
DOI: 10.1128/iai.00004-24.
Exploring the inhibition of the soluble lytic transglycosylase Cj0843c of Campylobacter jejuni via targeting different sites with different scaffolds.
Kumar V, Boorman J, Greenlee W, Zeng X, Lin J, van den Akker F
Protein Sci. 2023; 32(7):e4683.
PMID: 37209283
PMC: 10273340.
DOI: 10.1002/pro.4683.
An MltA-Like Lytic Transglycosylase Secreted by Bdellovibrio bacteriovorus Cleaves the Prey Septum during Predatory Invasion.
Banks E, Lambert C, Mason S, Tyson J, Radford P, McLaughlin C
J Bacteriol. 2023; 205(4):e0047522.
PMID: 37010281
PMC: 10127604.
DOI: 10.1128/jb.00475-22.
mltG gene deletion mitigated virulence potential of Streptococcus mutans: An in-vitro, ex-situ and in-vivo study.
Zaidi S, Ali K, Chawla Y, Khan A
AMB Express. 2023; 13(1):19.
PMID: 36806997
PMC: 9941400.
DOI: 10.1186/s13568-023-01526-x.
Neisseria genes required for persistence identified via in vivo screening of a transposon mutant library.
Rhodes K, Ma M, Rendon M, So M
PLoS Pathog. 2022; 18(5):e1010497.
PMID: 35580146
PMC: 9140248.
DOI: 10.1371/journal.ppat.1010497.
The AmiC/NlpD Pathway Dominates Peptidoglycan Breakdown in Neisseria meningitidis and Affects Cell Separation, NOD1 Agonist Production, and Infection.
Chan J, Hackett K, Woodhams K, Schaub R, Dillard J
Infect Immun. 2022; 90(3):e0048521.
PMID: 35225652
PMC: 8929373.
DOI: 10.1128/IAI.00485-21.
Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application.
Furuyama N, Sircili M
Biomed Res Int. 2021; 2021:1490732.
PMID: 33834062
PMC: 8016564.
DOI: 10.1155/2021/1490732.
A Novel Periplasmic Protein Controlling Cell Wall Homeostasis and Virulence.
Cestero J, Castanheira S, Pucciarelli M, Garcia-Del Portillo F
Front Microbiol. 2021; 12:633701.
PMID: 33679664
PMC: 7933661.
DOI: 10.3389/fmicb.2021.633701.
Identification of Membrane-Bound Lytic Murein Transglycosylase A (MltA) as a Growth Factor for in a Silkworm Infection Model.
Nakamura T, Shimizu T, Inagaki F, Okazaki S, Saha S, Uda A
Front Cell Infect Microbiol. 2021; 10:581864.
PMID: 33553001
PMC: 7862118.
DOI: 10.3389/fcimb.2020.581864.
Inactivation of Genes Encoding MutL and MutS Proteins Influences Adhesion and Biofilm Formation by .
Placzkiewicz J, Adamczyk-Poplawska M, Lasek R, Bacal P, Kwiatek A
Microorganisms. 2019; 7(12).
PMID: 31817122
PMC: 6955733.
DOI: 10.3390/microorganisms7120647.
Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System.
Brott A, Clarke A
Antibiotics (Basel). 2019; 8(3).
PMID: 31323733
PMC: 6783866.
DOI: 10.3390/antibiotics8030094.
A Mutant, Lacking the Soluble Lytic Transglycosylase Slt, Exhibits Defects in Both Growth and Virulence.
Bachert B, Biryukov S, Chua J, Rodriguez S, Toothman Jr R, Cote C
Front Microbiol. 2019; 10:1343.
PMID: 31258523
PMC: 6587636.
DOI: 10.3389/fmicb.2019.01343.
Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan.
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M
Front Microbiol. 2019; 10:331.
PMID: 30873139
PMC: 6403190.
DOI: 10.3389/fmicb.2019.00331.
The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release.
Schaub R, Dillard J
Front Microbiol. 2019; 10:73.
PMID: 30766523
PMC: 6365954.
DOI: 10.3389/fmicb.2019.00073.