Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography
Overview
Chemistry
Molecular Biology
Authors
Affiliations
Because they enable labeling of biological samples in a genetically-encoded manner, Fluorescent Proteins (FPs) have revolutionized life sciences. Photo-transformable fluorescent proteins (PTFPs), in particular, recently attracted wide interest, as their fluorescence state can be actively modulated by light, a property central to the emergence of super-resolution microscopy. PTFPs, however, exhibit highly complex photophysical behaviours that are still poorly understood, hampering the rational engineering of variants with improved performances. We show that kinetic crystallography combined with in crystallo optical spectroscopy, modeling approaches and single-molecule measurements constitutes a powerful tool to decipher processes such as photoactivation, photoconversion, photoswitching, photoblinking and photobleaching. Besides potential applications for the design of enhanced PTFPs, these investigations provide fundamental insight into photoactivated protein dynamics.
Advanced imaging and labelling methods to decipher brain cell organization and function.
Choquet D, Sainlos M, Sibarita J Nat Rev Neurosci. 2021; 22(4):237-255.
PMID: 33712727 DOI: 10.1038/s41583-021-00441-z.
Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization.
Roebroek T, Duwe S, Vandenberg W, Dedecker P Int J Mol Sci. 2017; 18(9).
PMID: 28930199 PMC: 5618663. DOI: 10.3390/ijms18092015.