Ng W, Zhang Z, Yang J
J Chem Theory Comput. 2025; 21(4):1602-1614.
PMID: 39902570
PMC: 11866754.
DOI: 10.1021/acs.jctc.4c01261.
Wang G, Wang C, Zhang X, Li Z, Zhou J, Sun Z
iScience. 2024; 27(5):109673.
PMID: 38646181
PMC: 11033164.
DOI: 10.1016/j.isci.2024.109673.
Kaser S, Vazquez-Salazar L, Meuwly M, Topfer K
Digit Discov. 2023; 2(1):28-58.
PMID: 36798879
PMC: 9923808.
DOI: 10.1039/d2dd00102k.
Lee S, Ermanis K, Goodman J
Chem Sci. 2022; 13(24):7204-7214.
PMID: 35799803
PMC: 9214916.
DOI: 10.1039/d1sc06324c.
Matlock M, Hoffman M, Dang N, Folmsbee D, Langkamp L, Hutchison G
J Phys Chem A. 2021; 125(40):8978-8986.
PMID: 34609871
PMC: 10348818.
DOI: 10.1021/acs.jpca.1c04462.
Ab Initio Machine Learning in Chemical Compound Space.
Huang B, Anatole von Lilienfeld O
Chem Rev. 2021; 121(16):10001-10036.
PMID: 34387476
PMC: 8391942.
DOI: 10.1021/acs.chemrev.0c01303.
Machine learning models for hydrogen bond donor and acceptor strengths using large and diverse training data generated by first-principles interaction free energies.
Bauer C, Schneider G, Goller A
J Cheminform. 2021; 11(1):59.
PMID: 33430967
PMC: 6737620.
DOI: 10.1186/s13321-019-0381-4.
Site-Level Bioactivity of Small-Molecules from Deep-Learned Representations of Quantum Chemistry.
Sarullo K, Matlock M, Swamidass S
J Phys Chem A. 2020; 124(44):9194-9202.
PMID: 33084331
PMC: 8716316.
DOI: 10.1021/acs.jpca.0c06231.
Deep Neural Networks for Multicomponent Molecular Systems.
Hanaoka K
ACS Omega. 2020; 5(33):21042-21053.
PMID: 32875241
PMC: 7450624.
DOI: 10.1021/acsomega.0c02599.
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.
St John P, Guan Y, Kim Y, Kim S, Paton R
Nat Commun. 2020; 11(1):2328.
PMID: 32393773
PMC: 7214445.
DOI: 10.1038/s41467-020-16201-z.
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules.
Smith J, Zubatyuk R, Nebgen B, Lubbers N, Barros K, Roitberg A
Sci Data. 2020; 7(1):134.
PMID: 32358545
PMC: 7195467.
DOI: 10.1038/s41597-020-0473-z.
QSAR without borders.
Muratov E, Bajorath J, Sheridan R, Tetko I, Filimonov D, Poroikov V
Chem Soc Rev. 2020; 49(11):3525-3564.
PMID: 32356548
PMC: 8008490.
DOI: 10.1039/d0cs00098a.
Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals.
Garcia-Muelas R, Lopez N
Nat Commun. 2019; 10(1):4687.
PMID: 31615991
PMC: 6794282.
DOI: 10.1038/s41467-019-12709-1.
A quantitative uncertainty metric controls error in neural network-driven chemical discovery.
Janet J, Duan C, Yang T, Nandy A, Kulik H
Chem Sci. 2019; 10(34):7913-7922.
PMID: 31588334
PMC: 6764470.
DOI: 10.1039/c9sc02298h.
A neural network protocol for electronic excitations of -methylacetamide.
Ye S, Hu W, Li X, Zhang J, Zhong K, Zhang G
Proc Natl Acad Sci U S A. 2019; 116(24):11612-11617.
PMID: 31147467
PMC: 6575560.
DOI: 10.1073/pnas.1821044116.
How machine learning can assist the interpretation of molecular dynamics simulations and conceptual understanding of chemistry.
Hase F, Fdez Galvan I, Aspuru-Guzik A, Lindh R, Vacher M
Chem Sci. 2019; 10(8):2298-2307.
PMID: 30881655
PMC: 6385677.
DOI: 10.1039/c8sc04516j.
Applying machine learning techniques to predict the properties of energetic materials.
Elton D, Boukouvalas Z, Butrico M, Fuge M, Chung P
Sci Rep. 2018; 8(1):9059.
PMID: 29899464
PMC: 5998124.
DOI: 10.1038/s41598-018-27344-x.
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.
Yao K, Herr J, Toth D, Mckintyre R, Parkhill J
Chem Sci. 2018; 9(8):2261-2269.
PMID: 29719699
PMC: 5897848.
DOI: 10.1039/c7sc04934j.
Learning a Local-Variable Model of Aromatic and Conjugated Systems.
Matlock M, Dang N, Swamidass S
ACS Cent Sci. 2018; 4(1):52-62.
PMID: 29392176
PMC: 5785769.
DOI: 10.1021/acscentsci.7b00405.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger M, Behler J, Marquetand P
Chem Sci. 2017; 8(10):6924-6935.
PMID: 29147518
PMC: 5636952.
DOI: 10.1039/c7sc02267k.