» Articles » PMID: 28560339

Robust Nanogenerators Based on Graft Copolymers Via Control of Dielectrics for Remarkable Output Power Enhancement

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2017 Jun 1
PMID 28560339
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

A robust nanogenerator based on poly(-butyl acrylate) (PtBA)-grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm, a 20-fold enhancement in output power, compared to pristine PVDF-based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study.

Citing Articles

Advanced Triboelectric Applications of Biomass-Derived Materials: A Comprehensive Review.

Park C, Kim M Materials (Basel). 2024; 17(9).

PMID: 38730775 PMC: 11084935. DOI: 10.3390/ma17091964.


Influence of SiC and ZnO Doping on the Electrical Performance of Polylactic Acid-Based Triboelectric Nanogenerators.

Skorda S, Bardakas A, Vekinis G, Tsamis C Sensors (Basel). 2024; 24(8).

PMID: 38676113 PMC: 11053822. DOI: 10.3390/s24082497.


An Ultrasensitive Laser-Induced Graphene Electrode-Based Triboelectric Sensor Utilizing Trapped Air as Effective Dielectric Layer.

Kamilya T, Han D, Shin J, Kwon S, Park J Polymers (Basel). 2024; 16(1).

PMID: 38201690 PMC: 10780912. DOI: 10.3390/polym16010026.


Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns.

Szewczyk P, Busolo T, Kar-Narayan S, Stachewicz U ACS Appl Mater Interfaces. 2023; 15(48):56575-56586.

PMID: 37985370 PMC: 10711711. DOI: 10.1021/acsami.3c14156.


Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications.

Costa C, Cardoso V, Martins P, Correia D, Goncalves R, Costa P Chem Rev. 2023; 123(19):11392-11487.

PMID: 37729110 PMC: 10571047. DOI: 10.1021/acs.chemrev.3c00196.


References
1.
Chen J, Guo H, He X, Liu G, Xi Y, Shi H . Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Appl Mater Interfaces. 2015; 8(1):736-44. DOI: 10.1021/acsami.5b09907. View

2.
Bai P, Zhu G, Lin Z, Jing Q, Chen J, Zhang G . Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano. 2013; 7(4):3713-9. DOI: 10.1021/nn4007708. View

3.
Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J . Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed Engl. 2011; 50(41):9697-702. DOI: 10.1002/anie.201103313. View

4.
Henning A, Gunzburger G, Johr R, Rosenwaks Y, Bozic-Weber B, Housecroft C . Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes. Beilstein J Nanotechnol. 2013; 4:418-28. PMC: 3701424. DOI: 10.3762/bjnano.4.49. View

5.
Zhu G, Lin Z, Jing Q, Bai P, Pan C, Yang Y . Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013; 13(2):847-53. DOI: 10.1021/nl4001053. View