» Articles » PMID: 28553940

Single-cell Genome Sequencing at Ultra-high-throughput with Microfluidic Droplet Barcoding

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2017 May 30
PMID 28553940
Citations 162
Authors
Affiliations
Soon will be listed here.
Abstract

The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.

Citing Articles

From specialization to broad adoption: Key trends in droplet microfluidic innovations enhancing accessibility to non-experts.

Breukers J, Ven K, Verbist W, Rutten I, Lammertyn J Biomicrofluidics. 2025; 19(2):021302.

PMID: 40046719 PMC: 11879384. DOI: 10.1063/5.0242599.


Phenotypic and genetic heterogeneity of in the course of an animal chronic infection.

Bednarczuk L, Chassard A, Plantade J, Charpentier X, Laaberki M Microb Genom. 2025; 11(2).

PMID: 39969275 PMC: 11840173. DOI: 10.1099/mgen.0.001352.


Single-cell pathogen diagnostics for combating antibiotic resistance.

Li H, Hsieh K, Wong P, Mach K, Liao J, Wang T Nat Rev Methods Primers. 2025; 3.

PMID: 39917628 PMC: 11800871. DOI: 10.1038/s43586-022-00190-y.


Component library creation and pixel array generation with micromilled droplet microfluidics.

McIntyre D, Arguijo D, Kawata K, Densmore D Microsyst Nanoeng. 2025; 11(1):6.

PMID: 39809750 PMC: 11733136. DOI: 10.1038/s41378-024-00839-6.


A Machine Vision Perspective on Droplet-Based Microfluidics.

Wang J, Wang H, Lai H, Liu F, Cui B, Yu W Adv Sci (Weinh). 2025; 12(8):e2413146.

PMID: 39742464 PMC: 11848540. DOI: 10.1002/advs.202413146.


References
1.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

2.
Nathan C, Cars O . Antibiotic resistance--problems, progress, and prospects. N Engl J Med. 2014; 371(19):1761-3. DOI: 10.1056/NEJMp1408040. View

3.
Jiang S, Paul J . Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 1998; 64(8):2780-7. PMC: 106772. DOI: 10.1128/AEM.64.8.2780-2787.1998. View

4.
Gole J, Gore A, Richards A, Chiu Y, Fung H, Bushman D . Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol. 2013; 31(12):1126-32. PMC: 3875318. DOI: 10.1038/nbt.2720. View

5.
Podar M, Abulencia C, Walcher M, Hutchison D, Zengler K, Garcia J . Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol. 2007; 73(10):3205-14. PMC: 1907129. DOI: 10.1128/AEM.02985-06. View