» Articles » PMID: 28553363

Pancake Bouncing on Superhydrophobic Surfaces

Overview
Journal Nat Phys
Specialty Biophysics
Date 2017 May 30
PMID 28553363
Citations 89
Authors
Affiliations
Soon will be listed here.
Abstract

Engineering surfaces that promote rapid drop detachment1,2 is of importance to a wide range of applications including anti-icing3-5, dropwise condensation6, and self-cleaning7-9. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nano-textures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows for a four-fold reduction in contact time compared to conventional complete rebound1,10-13. We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures which behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

Citing Articles

Drop splitting on hydrophobic wedge-shaped tips after central impact: effect of sharpness and wetting properties.

Zhou X, Diaz D, Ni Z, Shumaly S, Liu J, Kappl M Soft Matter. 2025; 21(10):1949-1956.

PMID: 39967379 PMC: 11836601. DOI: 10.1039/d4sm01373e.


Armored Regenerable Cilia.

Wei C, Gendelman O, Jiang Y ACS Nano. 2025; 19(7):7317-7326.

PMID: 39937570 PMC: 11867016. DOI: 10.1021/acsnano.4c17839.


Thermodynamic mechanisms governing icing: Key insights for designing passive anti-icing surfaces.

Xu Z, Wang G, Li S, Li D, Zhou W, Yang C iScience. 2025; 28(2):111668.

PMID: 39925431 PMC: 11804742. DOI: 10.1016/j.isci.2024.111668.


Numerical investigation of water droplet collision dynamics on moving surfaces.

Tian S, Ghaderi A Sci Rep. 2025; 15(1):4629.

PMID: 39920234 PMC: 11805993. DOI: 10.1038/s41598-025-87937-1.


Droplets impact on sparse microgrooved non-wetting surfaces.

Zhang L, Wu J, Lu Y, Yu Y Sci Rep. 2025; 15(1):2918.

PMID: 39849006 PMC: 11757775. DOI: 10.1038/s41598-025-87294-z.


References
1.
Zheng Y, Bai H, Huang Z, Tian X, Nie F, Zhao Y . Directional water collection on wetted spider silk. Nature. 2010; 463(7281):640-3. DOI: 10.1038/nature08729. View

2.
Verho T, Korhonen J, Sainiemi L, Jokinen V, Bower C, Franze K . Reversible switching between superhydrophobic states on a hierarchically structured surface. Proc Natl Acad Sci U S A. 2012; 109(26):10210-3. PMC: 3387048. DOI: 10.1073/pnas.1204328109. View

3.
Lembach A, Tan H, Roisman I, Gambaryan-Roisman T, Zhang Y, Tropea C . Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir. 2010; 26(12):9516-23. DOI: 10.1021/la100031d. View

4.
Moulinet S, Bartolo D . Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces. Eur Phys J E Soft Matter. 2007; 24(3):251-60. DOI: 10.1140/epje/i2007-10235-y. View

5.
Vakarelski I, Patankar N, Marston J, Chan D, Thoroddsen S . Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature. 2012; 489(7415):274-7. DOI: 10.1038/nature11418. View