» Articles » PMID: 28543663

LncRNA-MALAT1 Promotes Angiogenesis of Thyroid Cancer by Modulating Tumor-Associated Macrophage FGF2 Protein Secretion

Overview
Journal J Cell Biochem
Date 2017 May 26
PMID 28543663
Citations 99
Authors
Affiliations
Soon will be listed here.
Abstract

Tumor-associated macrophages (TAMs) in the tumor microenvironment have been associated with enhanced tumor progression. In this study, we investigated the role and molecular mechanisms of MALAT1 in TAMs derived from thyroid cancer. The expression of MALAT1 and FGF2 in thyroid cancer tissues and cells were measured by quantitative real-time PCR and Western blot. TAMs were transfected with indicated constructs. Then the culture medium (CM) from TAMs was harvested for assay. Secreted FGF2 protein levels and TNF-α, IL-12, and IL-10 levels were detected by ELISA. The cell proliferation, migration, and invasion of FTC133 cells were determined with a CCK-8 assay and a Transwell assay, respectively. In addition, HUVEC vasculature formation was measured by matrigel angiogenesis assay. The higher levels of MALAT-1 and FGF2 were observed in thyroid cancer tissues and in thyroid cancer cells compared to that in the control. Besides, in the presence of si-MALAT1, the levels of TNF-α and IL-12 were significantly up-regulated whereas IL-10 was down-regulated in the CM from TAMs. Moreover, down-regulation of MALAT1 in TAMs reduced proliferation, migration, and invasion of FTC133 cells and inhibited angiogenesis. However, overexpression of FGF2 blocked the effects of MALAT1 siRNAs on cell migration, invasion, and angiogenesis. Our results suggest that MALAT1-mediated FGF2 protein secretion from TAMs inhibits inflammatory cytokines release, promotes proliferation, migration, and invasion of FTC133 cells and induces vasculature formation. J. Cell. Biochem. 118: 4821-4830, 2017. © 2017 Wiley Periodicals, Inc.

Citing Articles

Ailanthone disturbs cross-talk between cancer cells and tumor-associated macrophages via HIF1-α/LINC01956/FUS/β-catenin signaling pathway in glioblastoma.

Deng X, Zhang Q, Jin F, Lu F, Duan G, Han L Cancer Cell Int. 2024; 24(1):397.

PMID: 39639311 PMC: 11619249. DOI: 10.1186/s12935-024-03594-w.


Regulation and Therapeutic Application of Long non-Coding RNA in Tumor Angiogenesis.

Zhang S, Xia Y, Chen W, Dong H, Cui B, Liu C Technol Cancer Res Treat. 2024; 23:15330338241273239.

PMID: 39110070 PMC: 11307360. DOI: 10.1177/15330338241273239.


Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma.

Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G Cell Death Dis. 2024; 15(7):498.

PMID: 38997297 PMC: 11245522. DOI: 10.1038/s41419-024-06888-z.


Exosomal noncoding RNAs: decoding their role in thyroid cancer progression.

Sun W, Jiang C, Liu Q, Wang N, Huang R, Jiang G Front Endocrinol (Lausanne). 2024; 15:1337226.

PMID: 38933820 PMC: 11199389. DOI: 10.3389/fendo.2024.1337226.


Noncoding RNAs in tumorigenesis and tumor therapy.

Zhu P, Liu B, Fan Z Fundam Res. 2024; 3(5):692-706.

PMID: 38933287 PMC: 11197782. DOI: 10.1016/j.fmre.2023.05.014.