» Articles » PMID: 28533462

Thermal Consequences of Colour and Near-infrared Reflectance

Overview
Specialty Biology
Date 2017 May 24
PMID 28533462
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.

Citing Articles

Body Temperature Differences Between Green And Brown Grasshoppers Do Not Result From Thermal Physiology or Thermal Preferences.

Cabon L, Schielzeth H Ecol Evol. 2025; 15(3):e71104.

PMID: 40078323 PMC: 11896881. DOI: 10.1002/ece3.71104.


Environmental Gradients in Lizard Colouration.

Sreelatha L, Tarroso P, Nokelainen O, Boratynski Z, Carretero M Ecol Evol. 2025; 15(3):e71012.

PMID: 40027420 PMC: 11871090. DOI: 10.1002/ece3.71012.


Infrared absorbers inspired by nature.

Mouchet S J R Soc Interface. 2025; 22(223):20240284.

PMID: 39965638 PMC: 11835496. DOI: 10.1098/rsif.2024.0284.


Thermal Melanism in (Coleoptera: Scarabaeidae: Cetoniinae).

Bogusch P, Petrik O, Hlavacek A, Sebesta O, Sipek P Insects. 2025; 16(1).

PMID: 39859642 PMC: 11765898. DOI: 10.3390/insects16010061.


Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Bertolesi G, Debnath N, Heshami N, Bui R, Zadeh-Haghighi H, Simon C Pigment Cell Melanoma Res. 2025; 38(1):e13220.

PMID: 39825699 PMC: 11742648. DOI: 10.1111/pcmr.13220.


References
1.
CLOUDSLEY-THOMPSON J . Multiple factors in the evolution of animal coloration. Naturwissenschaften. 1999; 86(3):123-32. DOI: 10.1007/s001140050584. View

2.
Pereboom J, Biesmeijer J . Thermal constraints for stingless bee foragers: the importance of body size and coloration. Oecologia. 2003; 137(1):42-50. DOI: 10.1007/s00442-003-1324-2. View

3.
Tattersall G, Eterovick P, de Andrade D . Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). J Exp Biol. 2006; 209(Pt 7):1185-96. DOI: 10.1242/jeb.02038. View

4.
Bakken G, Vanderbilt V, Buttemer W, Dawson W . Avian eggs: thermoregulatory value of very high near-infrared reflectance. Science. 1978; 200(4339):321-3. DOI: 10.1126/science.200.4339.321. View

5.
Sandre S, Tammaru T, Vanatoa A, Esperk T . Maintenance of larval color polymorphism in Orgyia antiqua (Lepidoptera: Lymantriidae): evaluating the role of thermal adaptation. Environ Entomol. 2008; 36(6):1303-9. DOI: 10.1603/0046-225x(2007)36[1303:molcpi]2.0.co;2. View