» Articles » PMID: 28525753

The U6 SnRNA MA Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2017 May 20
PMID 28525753
Citations 577
Authors
Affiliations
Soon will be listed here.
Abstract

Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.

Citing Articles

Pan-cancer analysis of Methyltransferase-like 16 (METTL16) and validated in colorectal cancer.

Liu L, Wang S, Chen X, Luo Q, Wang Z, Li J Aging (Albany NY). 2025; 17(2):588-606.

PMID: 40015977 PMC: 11892929. DOI: 10.18632/aging.206210.


De novo basecalling of RNA modifications at single molecule and nucleotide resolution.

Cruciani S, Delgado-Tejedor A, Pryszcz L, Medina R, Llovera L, Novoa E Genome Biol. 2025; 26(1):38.

PMID: 40001217 PMC: 11853310. DOI: 10.1186/s13059-025-03498-6.


SFP6 fluorescent probes for imaging SAM dynamics in living cells.

Zhang S, Li J, Cao G Mikrochim Acta. 2025; 192(3):180.

PMID: 39982573 DOI: 10.1007/s00604-025-07039-7.


The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions.

Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y EXCLI J. 2025; 24:113-150.

PMID: 39967906 PMC: 11830918. DOI: 10.17179/excli2024-7935.


Exploring m6A modifications in gastric cancer: from molecular mechanisms to clinical applications.

Li P, Fang X, Huang D Eur J Med Res. 2025; 30(1):98.

PMID: 39940056 PMC: 11823136. DOI: 10.1186/s40001-025-02353-5.


References
1.
Martinez-Chantar M, Latasa M, Varela-Rey M, Lu S, Garcia-Trevijano E, Mato J . L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. J Biol Chem. 2003; 278(22):19885-90. DOI: 10.1074/jbc.M211554200. View

2.
Luo S, Tong L . Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci U S A. 2014; 111(38):13834-9. PMC: 4183320. DOI: 10.1073/pnas.1412742111. View

3.
Dorsett M, Westlund B, Schedl T . METT-10, a putative methyltransferase, inhibits germ cell proliferative fate in Caenorhabditis elegans. Genetics. 2009; 183(1):233-47. PMC: 2746148. DOI: 10.1534/genetics.109.105270. View

4.
Linder B, Grozhik A, Olarerin-George A, Meydan C, Mason C, Jaffrey S . Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015; 12(8):767-72. PMC: 4487409. DOI: 10.1038/nmeth.3453. View

5.
Boutz P, Bhutkar A, Sharp P . Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 2015; 29(1):63-80. PMC: 4281565. DOI: 10.1101/gad.247361.114. View