» Articles » PMID: 28513602

Tetrahelical Structural Family Adopted by AGCGA-rich Regulatory DNA Regions

Overview
Journal Nat Commun
Specialty Biology
Date 2017 May 18
PMID 28513602
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.

Citing Articles

Effects of hydrazone-based G-quadruplex ligands on -depleted cancer cells and a strain.

Germoglio M, DAria F, Cortone G, Prodomo A, Mahtab M, Morigi R NAR Cancer. 2025; 7(1):zcaf004.

PMID: 39927196 PMC: 11806260. DOI: 10.1093/narcan/zcaf004.


Visualizing liquid-liquid phase transitions.

Sahoo B, Deng X, Wong E, Clark N, Yang H, Subramanian V bioRxiv. 2024; .

PMID: 39554013 PMC: 11565804. DOI: 10.1101/2023.10.09.561572.


NMR Screen Reveals the Diverse Structural Landscape of a G-Quadruplex Library.

Sgallova R, Volek M, Kurfurst J, Srb P, Veverka V, Curtis E Chemistry. 2024; 30(67):e202401437.

PMID: 39159147 PMC: 11610706. DOI: 10.1002/chem.202401437.


A sodium/potassium switch for G4-prone G/C-rich sequences.

Luo Y, Zivkovic M, Wang J, Rynes J, Foldynova-Trantirkova S, Trantirek L Nucleic Acids Res. 2023; 52(1):448-461.

PMID: 37986223 PMC: 10783510. DOI: 10.1093/nar/gkad1073.


Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure.

Zalar M, Wang B, Plavec J, Sket P Int J Mol Sci. 2023; 24(17).

PMID: 37686239 PMC: 10487854. DOI: 10.3390/ijms241713437.


References
1.
Ulitsky I, Bartel D . lincRNAs: genomics, evolution, and mechanisms. Cell. 2013; 154(1):26-46. PMC: 3924787. DOI: 10.1016/j.cell.2013.06.020. View

2.
Mukundan V, Phan A . Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. J Am Chem Soc. 2013; 135(13):5017-28. DOI: 10.1021/ja310251r. View

3.
Kovanda A, Zalar M, Sket P, Plavec J, Rogelj B . Anti-sense DNA d(GGCCCC)n expansions in C9ORF72 form i-motifs and protonated hairpins. Sci Rep. 2015; 5:17944. PMC: 4668579. DOI: 10.1038/srep17944. View

4.
Anczukow O, Akerman M, Clery A, Wu J, Shen C, Shirole N . SRSF1-Regulated Alternative Splicing in Breast Cancer. Mol Cell. 2015; 60(1):105-17. PMC: 4597910. DOI: 10.1016/j.molcel.2015.09.005. View

5.
Stanley E, Chitu V . CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014; 6(6). PMC: 4031967. DOI: 10.1101/cshperspect.a021857. View