» Articles » PMID: 28508050

Butterfly Gyroid Nanostructures As a Time-frozen Glimpse of Intracellular Membrane Development

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2017 May 17
PMID 28508050
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.

Citing Articles

Elucidating nanostructural organization and photonic properties of butterfly wing scales using hyperspectral microscopy.

Jessop A, Pirih P, Wang L, Patel N, Clode P, Schroder-Turk G J R Soc Interface. 2024; 21(218):20240185.

PMID: 39257280 PMC: 11463223. DOI: 10.1098/rsif.2024.0185.


The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales.

Lloyd V, Burg S, Harizanova J, Garcia E, Hill O, Enciso-Romero J Nat Commun. 2024; 15(1):4073.

PMID: 38769302 PMC: 11106069. DOI: 10.1038/s41467-024-48060-3.


Construction of the single-diamond-structured titania scaffold-Recreation of the holy grail photonic structure.

Wang C, Cui C, Deng Q, Zhang C, Asahina S, Cao Y Proc Natl Acad Sci U S A. 2024; 121(15):e2318072121.

PMID: 38573966 PMC: 11009672. DOI: 10.1073/pnas.2318072121.


Composite material in the sea urchin : ordered and disordered micrometre-scale bicontinuous geometries.

Jessop A, Millsteed A, Kirkensgaard J, Shaw J, Clode P, Schroder-Turk G J R Soc Interface. 2024; 21(212):20230597.

PMID: 38471532 PMC: 10932713. DOI: 10.1098/rsif.2023.0597.


Programmable Self-Assembly of Nanoplates into Bicontinuous Nanostructures.

Tanaka H, Dotera T, Hyde S ACS Nano. 2023; 17(16):15371-15378.

PMID: 37527198 PMC: 10448885. DOI: 10.1021/acsnano.2c11929.


References
1.
Winter B, Butz B, Dieker C, Schroder-Turk G, Mecke K, Spiecker E . Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi. Proc Natl Acad Sci U S A. 2015; 112(42):12911-6. PMC: 4620911. DOI: 10.1073/pnas.1511354112. View

2.
Giraldo M, Stavenga D . Wing coloration and pigment gradients in scales of pierid butterflies. Arthropod Struct Dev. 2007; 37(2):118-28. DOI: 10.1016/j.asd.2007.09.003. View

3.
Nixon-Abell J, Obara C, Weigel A, Li D, Legant W, Xu C . Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science. 2016; 354(6311). PMC: 6528812. DOI: 10.1126/science.aaf3928. View

4.
Wilts B, Michielsen K, De Raedt H, Stavenga D . Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales. Interface Focus. 2013; 2(5):681-7. PMC: 3438581. DOI: 10.1098/rsfs.2011.0082. View

5.
Vignolini S, Yufa N, Cunha P, Guldin S, Rushkin I, Stefik M . A 3D optical metamaterial made by self-assembly. Adv Mater. 2011; 24(10):OP23-7. DOI: 10.1002/adma.201103610. View