» Articles » PMID: 28497616

CHARMM-GUI Ligand Reader and Modeler for CHARMM Force Field Generation of Small Molecules

Overview
Journal J Comput Chem
Publisher Wiley
Specialties Biology
Chemistry
Date 2017 May 13
PMID 28497616
Citations 199
Authors
Affiliations
Soon will be listed here.
Abstract

Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc.

Citing Articles

Retinoids as Alternative Antifungal Agents Against : and Evidence.

Cosio T, Romeo A, Pistoia E, Pica F, Freni C, Iacovelli F Microorganisms. 2025; 13(2).

PMID: 40005604 PMC: 11857849. DOI: 10.3390/microorganisms13020237.


Enhancing Niacinamide Skin Penetration via Other Skin Brightening Agents: A Molecular Dynamics Simulation Study.

Somboon K, Chng C, Huang C, Gupta S Int J Mol Sci. 2025; 26(4).

PMID: 40004021 PMC: 11855608. DOI: 10.3390/ijms26041555.


The stability and self-assembly of tri-calcium silicate and hydroxyapatite scaffolds in bone tissue engineering applications.

Beheshtizadeh N, Seraji A, Azadpour B, Rezvantalab S J Biol Eng. 2025; 19(1):16.

PMID: 39962588 PMC: 11834295. DOI: 10.1186/s13036-025-00481-4.


Hidden complexity of α7 nicotinic acetylcholine receptor desensitization revealed by MD simulations and Markov state modeling.

Avstrikova M, Milan Rodriguez P, Burke S, Hibbs R, Changeux J, Cecchini M Proc Natl Acad Sci U S A. 2025; 122(7):e2420993122.

PMID: 39946538 PMC: 11848294. DOI: 10.1073/pnas.2420993122.


Design of a light and Ca switchable organic-peptide hybrid.

Khaleel Z, No Y, Kim N, Bae D, Wu Y, Kim S Proc Natl Acad Sci U S A. 2025; 122(5):e2411316122.

PMID: 39883844 PMC: 11804555. DOI: 10.1073/pnas.2411316122.


References
1.
Vanommeslaeghe K, Raman E, MacKerell Jr A . Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model. 2012; 52(12):3155-68. PMC: 3528813. DOI: 10.1021/ci3003649. View

2.
Hospital A, Goni J, Orozco M, Gelpi J . Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem. 2015; 8:37-47. PMC: 4655909. DOI: 10.2147/AABC.S70333. View

3.
Best R, Zhu X, Shim J, Lopes P, Mittal J, Feig M . Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2013; 8(9):3257-3273. PMC: 3549273. DOI: 10.1021/ct300400x. View

4.
Lee J, Cheng X, Swails J, Yeom M, Eastman P, Lemkul J . CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2015; 12(1):405-13. PMC: 4712441. DOI: 10.1021/acs.jctc.5b00935. View

5.
Raymond J, Willett P . Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J Comput Aided Mol Des. 2003; 16(7):521-33. DOI: 10.1023/a:1021271615909. View