» Articles » PMID: 28494240

Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus Faecium

Overview
Publisher Cell Press
Date 2017 May 12
PMID 28494240
Citations 144
Authors
Affiliations
Soon will be listed here.
Abstract

Antibiotic-mediated microbiota destruction and the consequent loss of colonization resistance can result in intestinal domination with vancomycin-resistant Enterococcus (VRE), leading to bloodstream infection in hospitalized patients. Clearance of VRE remains a challenging goal that, if achieved, would reduce systemic VRE infections and patient-to-patient transmission. Although obligate anaerobic commensal bacteria have been associated with colonization resistance to VRE, the specific bacterial species involved remain undefined. Herein, we demonstrate that a precisely defined consortium of commensal bacteria containing the Clostridium cluster XIVa species Blautia producta and Clostridium bolteae restores colonization resistance against VRE and clears VRE from the intestines of mice. While C. bolteae did not directly mediate VRE clearance, it enabled intestinal colonization with B. producta, which directly inhibited VRE growth. These findings suggest that therapeutic or prophylactic administration of defined bacterial consortia to individuals with compromised microbiota composition may reduce inter-patient transmission and intra-patient dissemination of highly antibiotic-resistant pathogens.

Citing Articles

Gut microbiota strain richness is species specific and affects engraftment.

Chen-Liaw A, Aggarwala V, Mogno I, Haifer C, Li Z, Eggers J Nature. 2024; 637(8045):422-429.

PMID: 39604726 DOI: 10.1038/s41586-024-08242-x.


Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome.

Ghani R, Chrysostomou D, Roberts L, Pandiaraja M, Marchesi J, Mullish B Gut Microbes. 2024; 16(1):2423026.

PMID: 39499189 PMC: 11540080. DOI: 10.1080/19490976.2024.2423026.


Effects of Culture on Lactation Performance, Immune Function, Antioxidant Capacity, and Intestinal Flora of Sows.

Chen Z, Xiao L, Sun Q, Chen Q, Hua W, Zhang J Antioxidants (Basel). 2024; 13(8).

PMID: 39199216 PMC: 11352107. DOI: 10.3390/antiox13080970.


Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics.

Wei Y, Palacios Araya D, Palmer K Nat Rev Microbiol. 2024; 22(11):705-721.

PMID: 38890478 DOI: 10.1038/s41579-024-01058-6.


Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness.

Cho N, Strayer K, Dobson B, McDonald B Gut Microbes. 2024; 16(1):2351478.

PMID: 38780485 PMC: 11123462. DOI: 10.1080/19490976.2024.2351478.


References
1.
Marcobal A, Barboza M, Sonnenburg E, Pudlo N, Martens E, Desai P . Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011; 10(5):507-14. PMC: 3227561. DOI: 10.1016/j.chom.2011.10.007. View

2.
Caballero S, Carter R, Ke X, Susac B, Leiner I, Kim G . Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae. PLoS Pathog. 2015; 11(9):e1005132. PMC: 4559429. DOI: 10.1371/journal.ppat.1005132. View

3.
Savage D, Dubos R . Alterations in the mouse cecum and its flora produced by antibacterial drugs. J Exp Med. 1968; 128(1):97-110. PMC: 2138511. DOI: 10.1084/jem.128.1.97. View

4.
DeSantis T, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K . Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006; 72(7):5069-72. PMC: 1489311. DOI: 10.1128/AEM.03006-05. View

5.
Yurtsev E, Chao H, Datta M, Artemova T, Gore J . Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol Syst Biol. 2013; 9:683. PMC: 3779801. DOI: 10.1038/msb.2013.39. View