» Articles » PMID: 28493572

Effect of Motion on Tracer Activity Determination in CT Attenuation Corrected PET Images: A Lung Phantom Study

Overview
Journal Med Phys
Specialty Biophysics
Date 2017 May 12
PMID 28493572
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Respiratory motion is known to affect the quantitation of FDG18 uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with FDG18 solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in sphere's activity concentration from one PET/CT scan to another acquired with standard helical/clinical protocol can arise as a consequence of spatial mismatch between the sphere's location in PET emission and the CT data.

Citing Articles

Impact of Respiratory-gated 4D PET/CT Scan for Motion Correction in Characterizing Lesions Adjacent to the Diaphragm - A Cross-sectional Study at a Tertiary Care Institute.

Patro S, Aland P, James V, Lele V Indian J Nucl Med. 2024; 39(3):177-184.

PMID: 39291077 PMC: 11404739. DOI: 10.4103/ijnm.ijnm_142_23.


The clinical utility of phase-based respiratory gated PET imaging based on visual feedback with a head-mounted display system.

Mitsumoto T, Minamimoto R, Sunaoka F, Kishimoto S, Inoue K, Fukushi M Br J Radiol. 2019; 92(1098):20180233.

PMID: 31017455 PMC: 6592084. DOI: 10.1259/bjr.20180233.


On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework.

Kesner A, Schleyer P, Buther F, Walter M, Schafers K, Koo P EJNMMI Phys. 2015; 1(1):8.

PMID: 26501450 PMC: 4673082. DOI: 10.1186/2197-7364-1-8.


The use of positron emission tomography/computed tomography imaging in radiation therapy: a phantom study for setting internal target volume of biological target volume.

Kawakami W, Takemura A, Yokoyama K, Nakajima K, Yokoyama S, Koshida K Radiat Oncol. 2015; 10:1.

PMID: 25567003 PMC: 4299814. DOI: 10.1186/s13014-014-0315-2.


Thoracic tumor volume delineation in 4D-PET/CT by low dose interpolated CT for attenuation correction.

Huang T, Wang Y, Kao C PLoS One. 2013; 8(9):e75903.

PMID: 24086662 PMC: 3784394. DOI: 10.1371/journal.pone.0075903.