» Articles » PMID: 28475869

Glucose Sensing by Skeletal Myocytes Couples Nutrient Signaling to Systemic Homeostasis

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2017 May 6
PMID 28475869
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by β cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers K channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action.

Citing Articles

Identifying insulin-responsive circRNAs in chicken pectoralis.

Shao B, Wang Z, Luo P, Du P, Zhang X, Zhang H BMC Genomics. 2025; 26(1):148.

PMID: 39955508 PMC: 11830218. DOI: 10.1186/s12864-025-11347-w.


Myokines: metabolic regulation in obesity and type 2 diabetes.

Chen Z, Weng Z, Lin J, Meng Z Life Metab. 2025; 3(3):loae006.

PMID: 39872377 PMC: 11749576. DOI: 10.1093/lifemeta/loae006.


Enhancing diabetic muscle repair through W-GA nanodots: a nanomedicinal approach to ameliorate myopathy in type 2 diabetes.

Liu S, Wan R, Li Q, Chen Y, He Y, Feng X Burns Trauma. 2025; 13:tkae059.

PMID: 39867860 PMC: 11757907. DOI: 10.1093/burnst/tkae059.


Identification of BAF60b as a Chromatin-Remodeling Checkpoint of Diet-Induced Fatty Liver Disease.

Zhong J, Ji X, Zhao Y, Jia Y, Song C, Lv J Diabetes. 2024; 73(10):1615-1630.

PMID: 39046829 PMC: 11417444. DOI: 10.2337/db24-0002.


Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues.

Kumar K, Aburawi E, Ljubisavljevic M, Leow M, Feng X, Ansari S Clin Epigenetics. 2024; 16(1):78.

PMID: 38862980 PMC: 11167878. DOI: 10.1186/s13148-024-01692-0.


References
1.
Taniguchi C, Emanuelli B, Kahn C . Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006; 7(2):85-96. DOI: 10.1038/nrm1837. View

2.
Ozcan L, Wong C, Li G, Xu T, Pajvani U, Park S . Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 2012; 15(5):739-51. PMC: 3348356. DOI: 10.1016/j.cmet.2012.03.002. View

3.
Parra M, Verdin E . Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol. 2010; 10(4):454-60. DOI: 10.1016/j.coph.2010.04.004. View

4.
Havula E, Hietakangas V . Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin Cell Dev Biol. 2012; 23(6):640-7. DOI: 10.1016/j.semcdb.2012.02.007. View

5.
Flagg T, Enkvetchakul D, Koster J, Nichols C . Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev. 2010; 90(3):799-829. PMC: 3125986. DOI: 10.1152/physrev.00027.2009. View