» Articles » PMID: 28469274

CRISPR-Cpf1 Assisted Genome Editing of Corynebacterium Glutamicum

Overview
Journal Nat Commun
Specialty Biology
Date 2017 May 5
PMID 28469274
Citations 141
Authors
Affiliations
Soon will be listed here.
Abstract

Corynebacterium glutamicum is an important industrial metabolite producer that is difficult to genetically engineer. Although the Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been adapted for genome editing of multiple bacteria, it cannot be introduced into C. glutamicum. Here we report a Francisella novicida (Fn) CRISPR-Cpf1-based genome-editing method for C. glutamicum. CRISPR-Cpf1, combined with single-stranded DNA (ssDNA) recombineering, precisely introduces small changes into the bacterial genome at efficiencies of 86-100%. Large gene deletions and insertions are also obtained using an all-in-one plasmid consisting of FnCpf1, CRISPR RNA, and homologous arms. The two CRISPR-Cpf1-assisted systems enable N iterative rounds of genome editing in 3N+4 or 3N+2 days. A proof-of-concept, codon saturation mutagenesis at G149 of γ-glutamyl kinase relieves L-proline inhibition using Cpf1-assisted ssDNA recombineering. Thus, CRISPR-Cpf1-based genome editing provides a highly efficient tool for genetic engineering of Corynebacterium and other bacteria that cannot utilize the Sp CRISPR-Cas9 system.

Citing Articles

A single-plasmid-based, easily curable CRISPR/Cas9 system for rapid, iterative genome editing in Pseudomonas putida KT2440.

Wen Q, Chen J, Li J, Dharmasiddhi I, Yang M, Xing J Microb Cell Fact. 2024; 23(1):349.

PMID: 39734219 PMC: 11684315. DOI: 10.1186/s12934-024-02634-4.


Biology and applications of CRISPR-Cas12 and transposon-associated homologs.

Wu W, Adiego-Perez B, van der Oost J Nat Biotechnol. 2024; 42(12):1807-1821.

PMID: 39633151 DOI: 10.1038/s41587-024-02485-9.


Optogenetic control of Corynebacterium glutamicum gene expression.

Deng C, Xin R, Li X, Zhang J, Fan L, Qiu Y Nucleic Acids Res. 2024; 52(22):14260-14276.

PMID: 39607706 PMC: 11662647. DOI: 10.1093/nar/gkae1149.


From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review.

Raza A, Fatima P, Yasmeen B, Rana Z, Ellakwa D Naunyn Schmiedebergs Arch Pharmacol. 2024; .

PMID: 39404843 DOI: 10.1007/s00210-024-03509-6.


Advancements in gene editing technologies for probiotic-enabled disease therapy.

Wang L, Hu J, Li K, Zhao Y, Zhu M iScience. 2024; 27(9):110791.

PMID: 39286511 PMC: 11403445. DOI: 10.1016/j.isci.2024.110791.


References
1.
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A . Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994; 145(1):69-73. DOI: 10.1016/0378-1119(94)90324-7. View

2.
Friesner R, Murphy R, Repasky M, Frye L, Greenwood J, Halgren T . Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006; 49(21):6177-96. DOI: 10.1021/jm051256o. View

3.
Marco-Marin C, Gil-Ortiz F, Perez-Arellano I, Cervera J, Fita I, Rubio V . A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J Mol Biol. 2007; 367(5):1431-46. DOI: 10.1016/j.jmb.2007.01.073. View

4.
Friesner R, Banks J, Murphy R, Halgren T, Klicic J, Mainz D . Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004; 47(7):1739-49. DOI: 10.1021/jm0306430. View

5.
Jiang W, Bikard D, Cox D, Zhang F, Marraffini L . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013; 31(3):233-9. PMC: 3748948. DOI: 10.1038/nbt.2508. View