» Articles » PMID: 28460616

Epithelial-to-Mesenchymal Transition: A Mediator of Sorafenib Resistance in Advanced Hepatocellular Carcinoma

Overview
Specialty Oncology
Date 2017 May 3
PMID 28460616
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide and its incidence is steadily rising. Currently, sorafenib remains the only approved standard treatment for patients with advanced HCC, as it has proven to increase survival in these patients. However, clinical and preclinical observations indicate that sorafenib treatment may have limited efficacy due to tumor progression from the rapid development of acquired resistance. Elucidation of the underlying mechanisms of evasive resistance to sorafenib is a major challenge in HCC research. In recent years, the role of epithelial-to-mesenchymal transition (EMT) in the advancement of HCC and development of drug resistance has gained increasing attention. EMT is a developmental multistep molecular and cellular reprogramming process that is hijacked by cancer cells to enable aggressiveness. In this review, we provide an overview of the currently available preclinical studies on the EMT mechanisms underlying resistance to sorafenib treatment. Recent studies report enrichment of cancer stem cells (CSCs) after sorafenib treatment. Interestingly, EMT process has been implicated in the generation of CSCs associated with therapy resistance. We discuss how combination of sorafenib with EMT inhibitors could enhance the clinical response to sorafenib, resulting in longer duration of responses, than observed with sorafenib monotherapy. In particular, we discuss how these new insights may facilitate rational development of combination therapies in the future to impact survival of patients with advanced HCC.

Citing Articles

A novel strategy for sorafenib-resistant hepatocellular carcinoma: autotaxin Inhibition by PF-8380.

Kwak B, Park J, Kim O, Lee D, Hong T, Lee S J Cancer Res Clin Oncol. 2025; 151(3):110.

PMID: 40082280 PMC: 11906571. DOI: 10.1007/s00432-025-06156-3.


Two Distinct Characteristics of Immune Microenvironment in Human Hepatocellular Carcinoma with Wnt/β-Catenin Mutations.

Aoki T, Nishida N, Kurebayashi Y, Sakai K, Morita M, Chishina H Liver Cancer. 2024; 13(3):285-305.

PMID: 38894812 PMC: 11185857. DOI: 10.1159/000533818.


PHLDA2 reshapes the immune microenvironment and induces drug resistance in hepatocellular carcinoma.

Feng K, Peng H, Lv Q, Zhang Y Oncol Res. 2024; 32(6):1063-1078.

PMID: 38827322 PMC: 11136693. DOI: 10.32604/or.2024.047078.


CBX1 is involved in hepatocellular carcinoma progression and resistance to sorafenib and lenvatinib via IGF-1R/AKT/SNAIL signaling pathway.

Zheng S, Wu J, Wu W, Hu J, Zhang D, Huang C Hepatol Int. 2024; 18(5):1499-1515.

PMID: 38769286 PMC: 11461582. DOI: 10.1007/s12072-024-10696-0.


Hsa_circ_0051908 Promotes Hepatocellular Carcinoma Progression by Regulating the Epithelial-Mesenchymal Transition Process.

Wu Y, Tang H, Cui S, Liao Q, Zeng L, Tu Y Anal Cell Pathol (Amst). 2024; 2024:8645534.

PMID: 38715919 PMC: 11074858. DOI: 10.1155/2024/8645534.