Application of Nanosecond Laser Photolysis Protein Footprinting to Study EGFR Activation by EGF in Cells
Overview
Affiliations
Mass spectrometry-based protein footprinting emerged as a useful technology to understand protein ligand interactions in vitro. We have previously demonstrated the application of footprinting in live E. coli cells. Here, we further optimized an ultrafast laser photolysis hydroxyl radical footprinting method and applied it to study the interaction of EGF and EGFR in live mammalian cells. This method used a nanosecond laser to photochemically generate a burst of hydroxyl radicals in situ in-cell suspension to oxidize the amino acids on the protein surface. Mass spectrometric analysis of the thus modified peptides was interpreted to probe the solvent-accessible surface areas of the protein in its native biological state with and without EGF activation. Our footprinting data agreed with the two relevant EGFR crystal structures, indicating that this in-cell laser photolysis footprinting technique is a valid approach to study the structural properties of integral membrane proteins directly in the native environment.
Optical Study of Lysozyme Molecules in Aqueous Solutions after Exposure to Laser-Induced Breakdown.
Sarimov R, Matveyeva T, Mozhaeva V, Kuleshova A, Ignatova A, Simakin A Biomolecules. 2022; 12(11).
PMID: 36358963 PMC: 9687580. DOI: 10.3390/biom12111613.
Advances in mass spectrometry-based footprinting of membrane proteins.
Sun J, Li W, Gross M Proteomics. 2022; 22(8):e2100222.
PMID: 35290716 PMC: 10493193. DOI: 10.1002/pmic.202100222.
Puthenveetil R, Christenson E, Vinogradova O Membranes (Basel). 2022; 12(2).
PMID: 35207148 PMC: 8877495. DOI: 10.3390/membranes12020227.
MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY.
Pan X, Vachet R Mass Spectrom Rev. 2020; 41(1):51-69.
PMID: 33145813 PMC: 8093322. DOI: 10.1002/mas.21667.
THE MAKING OF A FOOTPRINT IN PROTEIN FOOTPRINTING: A REVIEW IN HONOR OF MICHAEL L. GROSS.
McKenzie-Coe A, Shortt R, Jones L Mass Spectrom Rev. 2020; 40(3):177-200.
PMID: 32400038 PMC: 7849054. DOI: 10.1002/mas.21632.