» Articles » PMID: 28450419

Phosphoproteome Analysis Reveals Differential Mode of Action of Sorafenib in Wildtype and Mutated FLT3 Acute Myeloid Leukemia (AML) Cells

Overview
Date 2017 Apr 29
PMID 28450419
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Constitutively activating internal tandem duplication (ITD) alterations of the receptor tyrosine kinase FLT3 (Fms-like tyrosine kinase 3) are common in acute myeloid leukemia (AML) and classifies FLT3 as an attractive therapeutic target. So far, applications of FLT3 small molecule inhibitors have been investigated primarily in FLT3-ITD patients. Only recently, a prolonged event-free survival has been observed in AML patients who were treated with the multikinase inhibitor sorafenib in addition to standard therapy. Here, we studied the sorafenib effect on proliferation in a panel of 13 FLT3-ITD and FLT3-ITD AML cell lines. Sorafenib IC50 values ranged from 0.001 to 5.6 μm, whereas FLT3-ITD cells (MOLM-13, MV4-11) were found to be more sensitive to sorafenib than FLT3-ITD cells. However, we identified two FLT3-ITD cell lines (MONO-MAC-1 and OCI-AML-2) which were also sorafenib sensitive. Phosphoproteome analyses revealed that the affected pathways differed in sorafenib sensitive FLT3-ITD and FLT3-ITD cells. In MV4-11 cells sorafenib suppressed mTOR signaling by direct inhibition of FLT3. In MONO-MAC-1 cells sorafenib inhibited the MEK/ERK pathway. These data suggest that the FLT3 status in AML patients might not be the only factor predicting response to treatment with sorafenib.

Citing Articles

Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia.

Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D Biomark Res. 2024; 12(1):60.

PMID: 38858750 PMC: 11165883. DOI: 10.1186/s40364-024-00600-1.


Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice.

Punetha A, Kotiya D Proteomes. 2023; 11(1).

PMID: 36648960 PMC: 9844371. DOI: 10.3390/proteomes11010002.


Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines.

Van Alphen C, Cloos J, Beekhof R, Cucchi D, Piersma S, Knol J Mol Cell Proteomics. 2020; 19(5):884-899.

PMID: 32102969 PMC: 7196578. DOI: 10.1074/mcp.RA119.001504.


High PD-L1 Expression Predicts for Worse Outcome of Leukemia Patients with Concomitant and Mutations.

Brodska B, Otevrelova P, Salek C, Fuchs O, Gasova Z, Kuzelova K Int J Mol Sci. 2019; 20(11).

PMID: 31185600 PMC: 6600137. DOI: 10.3390/ijms20112823.


Role of drug transporters in the sensitivity of acute myeloid leukemia to sorafenib.

Macias R, Sanchez-Martin A, Rodriguez-Macias G, Sanchez-Abarca L, Lozano E, Herraez E Oncotarget. 2018; 9(47):28474-28485.

PMID: 29983874 PMC: 6033373. DOI: 10.18632/oncotarget.25494.


References
1.
Klammer M, Dybowski J, Hoffmann D, Schaab C . Identification of significant features by the Global Mean Rank test. PLoS One. 2014; 9(8):e104504. PMC: 4132091. DOI: 10.1371/journal.pone.0104504. View

2.
Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright J . Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2010; 96(1):62-8. PMC: 3012766. DOI: 10.3324/haematol.2010.030452. View

3.
Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y . Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia. 2007; 21(3):439-45. DOI: 10.1038/sj.leu.2404508. View

4.
Davis M, Hunt J, Herrgard S, Ciceri P, Wodicka L, Pallares G . Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011; 29(11):1046-51. DOI: 10.1038/nbt.1990. View

5.
Lundby A, Andersen M, Steffensen A, Horn H, Kelstrup C, Francavilla C . In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal. 2013; 6(278):rs11. DOI: 10.1126/scisignal.2003506. View