Small Molecules Targeting Histone Demethylase Genes (KDMs) Inhibit Growth of Temozolomide-resistant Glioblastoma Cells
Overview
Authors
Affiliations
In glioblastoma several histone demethylase genes (KDM) are overexpressed compared to normal brain tissue and the development of Temozolomide (TMZ) resistance is accompanied by the transient further increased expression of KDM5A and other KDMs following a mechanism that we defined as "epigenetic resilience". We hypothesized that targeting KDMs may kill the cells that survive the cytotoxic therapy.We determined the effect of JIB 04 and CPI-455, two KDM inhibitors, on glioblastoma cells and found that both molecules are more effective against TMZ-resistant rather than native cells.Because of its lower IC50, we focused on JIB 04 that targets KDM5A and other KDMs as well. We have shown that this molecule activates autophagic and apoptotic pathways, interferes with cell cycle progression, inhibits cell clonogenicity and dephosphorylates Akt thus inactivating a potent pro-survival pathway. We performed combination temozolomide/JIB 04 in vitro treatments showing that these two molecules, under certain conditions, have a strong synergic effect and we hypothesize that JIB 04 intercepts the cells that escape the G2 block exerted by TMZ. Finally we studied the permeability of JIB 04 across the blood-brain barrier and found that this molecule reaches bioactive concentration in the brain; furthermore a pilot in vivo experiment in an orthotopic GB xenograft model showed a trend toward longer survival in treated mice with an Hazard Ratio of 0.5.In conclusion we propose that the combination between cytotoxic drugs and molecules acting on the epigenetic landscape may offer the opportunity to develop new therapies for this invariably lethal disease.
A Review of Therapeutic Agents Given by Convection-Enhanced Delivery for Adult Glioblastoma.
Rolfe N, Dadario N, Canoll P, Bruce J Pharmaceuticals (Basel). 2024; 17(8).
PMID: 39204078 PMC: 11357193. DOI: 10.3390/ph17080973.
KDM5B predicts temozolomide-resistant subclones in glioblastoma.
Ullrich V, Ertmer S, Baginska A, Dorsch M, Gull H, Cima I iScience. 2024; 27(1):108596.
PMID: 38174322 PMC: 10762356. DOI: 10.1016/j.isci.2023.108596.
Li L, Zeng X, Chao Z, Luo J, Guan W, Zhang Q Adv Sci (Weinh). 2023; 10(27):e2301975.
PMID: 37526345 PMC: 10520657. DOI: 10.1002/advs.202301975.
The role of histone H3 lysine demethylases in glioblastoma.
Young D, Guha C, Sidoli S Cancer Metastasis Rev. 2023; 42(2):445-454.
PMID: 37286866 DOI: 10.1007/s10555-023-10114-1.
The function of histone methylation and acetylation regulators in GBM pathophysiology.
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim A Front Oncol. 2023; 13:1144184.
PMID: 37205197 PMC: 10185819. DOI: 10.3389/fonc.2023.1144184.