» Articles » PMID: 28431231

Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2017 Apr 22
PMID 28431231
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

According to the N-end rule, the N-terminal residue of a protein determines its stability. In bacteria, the adaptor ClpS mediates proteolysis by delivering substrates bearing specific N-terminal residues to the protease ClpAP. We now report that the Salmonella adaptor ClpS binds to the N terminus of the regulatory protein PhoP, resulting in PhoP degradation by ClpAP. We establish that the PhoP-activated protein MgtC protects PhoP from degradation by outcompeting ClpS for binding to PhoP. MgtC appears to act exclusively on PhoP, as it did not alter the stability of a different ClpS-dependent ClpAP substrate. Removal of five N-terminal residues rendered PhoP stability independent of both the clpS and mgtC genes. By preserving PhoP protein levels, MgtC enables normal temporal transcription of PhoP-activated genes. The identified mechanism provides a simple means to spare specific substrates from an adaptor-dependent protease.

Citing Articles

An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system.

Mao M, He L, Yan Q Front Cell Infect Microbiol. 2025; 15:1509037.

PMID: 39958932 PMC: 11825808. DOI: 10.3389/fcimb.2025.1509037.


Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes.

Groisman E, Choi J Bioessays. 2023; 45(10):e2300062.

PMID: 37533411 PMC: 10530229. DOI: 10.1002/bies.202300062.


How Bacterial Pathogens Coordinate Appetite with Virulence.

Pokorzynski N, Groisman E Microbiol Mol Biol Rev. 2023; 87(3):e0019822.

PMID: 37358444 PMC: 10521370. DOI: 10.1128/mmbr.00198-22.


Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Typhimurium.

Song H, Choi E, Lee E J Microbiol Biotechnol. 2023; 33(9):1130-1140.

PMID: 37330414 PMC: 10580885. DOI: 10.4014/jmb.2306.06016.


The ins and outs of Bacillus proteases: activities, functions and commercial significance.

Harwood C, Kikuchi Y FEMS Microbiol Rev. 2021; 46(1).

PMID: 34410368 PMC: 8767453. DOI: 10.1093/femsre/fuab046.


References
1.
Reid B, Miranker A, Horwich A . Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature. 1999; 401(6748):90-3. DOI: 10.1038/43481. View

2.
Lee E, Choi J, Groisman E . Control of a Salmonella virulence operon by proline-charged tRNA(Pro). Proc Natl Acad Sci U S A. 2014; 111(8):3140-5. PMC: 3939920. DOI: 10.1073/pnas.1316209111. View

3.
Bader M, Sanowar S, Daley M, Schneider A, Cho U, Xu W . Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005; 122(3):461-72. DOI: 10.1016/j.cell.2005.05.030. View

4.
Alpuche Aranda C, Swanson J, Loomis W, MILLER S . Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A. 1992; 89(21):10079-83. PMC: 50281. DOI: 10.1073/pnas.89.21.10079. View

5.
Lee E, Groisman E . Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature. 2012; 486(7402):271-5. PMC: 3711680. DOI: 10.1038/nature11090. View