» Articles » PMID: 28428560

Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration

Overview
Journal Sci Rep
Specialty Science
Date 2017 Apr 22
PMID 28428560
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11'000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.

Citing Articles

Revealing single-neuron and network-activity interaction by combining high-density microelectrode array and optogenetics.

Kobayashi T, Shimba K, Narumi T, Asahina T, Kotani K, Jimbo Y Nat Commun. 2024; 15(1):9547.

PMID: 39528508 PMC: 11555060. DOI: 10.1038/s41467-024-53505-w.


Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains.

Donner C, Bartram J, Hornauer P, Kim T, Roqueiro D, Hierlemann A PLoS Comput Biol. 2024; 20(4):e1011964.

PMID: 38683881 PMC: 11081509. DOI: 10.1371/journal.pcbi.1011964.


Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology.

Mateus J, Sousa M, Burrone J, Aguiar P J Neurosci. 2024; 44(11).

PMID: 38479812 PMC: 10941245. DOI: 10.1523/JNEUROSCI.1446-23.2023.


Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording.

Xiang Y, Shi K, Li Y, Xue J, Tong Z, Li H Nanomicro Lett. 2024; 16(1):132.

PMID: 38411852 PMC: 10899154. DOI: 10.1007/s40820-024-01336-1.


A Novel 3D Helical Microelectrode Array for In Vitro Extracellular Action Potential Recording.

Geramifard N, Lawson J, Cogan S, Black B Micromachines (Basel). 2022; 13(10).

PMID: 36296045 PMC: 9611359. DOI: 10.3390/mi13101692.


References
1.
Darbon P, Scicluna L, Tscherter A, Streit J . Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks. Eur J Neurosci. 2002; 15(4):671-83. DOI: 10.1046/j.1460-9568.2002.01904.x. View

2.
Royer S, Pare D . Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature. 2003; 422(6931):518-22. DOI: 10.1038/nature01530. View

3.
Fuentealba P, Crochet S, Timofeev I, Steriade M . Synaptic interactions between thalamic and cortical inputs onto cortical neurons in vivo. J Neurophysiol. 2004; 91(5):1990-8. DOI: 10.1152/jn.01105.2003. View

4.
Polsky A, Mel B, Schiller J . Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci. 2004; 7(6):621-7. DOI: 10.1038/nn1253. View

5.
Boucsein C, Nawrot M, Rotter S, Aertsen A, Heck D . Controlling synaptic input patterns in vitro by dynamic photo stimulation. J Neurophysiol. 2005; 94(4):2948-58. DOI: 10.1152/jn.00245.2005. View